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Abstract
Reversing actions is the following problem: After
executing a sequence of actions, which sequence of
actions brings the agent back to the state just before
this execution (an action reversal). Notably, this
problem is different from a vanilla planning prob-
lem since the state we have to get back to is in gen-
eral unknown. It emerges, for example, if an agent
needs to find out which action sequences are un-
doable, and which ones are committed choices. It
has applications related to plan execution and mon-
itoring in nondeterministic domains, such as recov-
ering from a failed execution by partially undoing
the plan, dynamically switching from one executed
plan to another, or restarting plans. We formal-
ize action reversal in a logic-based action frame-
work and characterize its computational complex-
ity. Since unsurprisingly, the problem is intractable
in general, we present a knowledge compilation
approach that constructs offline a reverse plan li-
brary for efficient (in some cases, linear time) on-
line computation of action reversals. Our results
for the generic framework can be easily applied for
expressive action languages such asC+ orK.

1 Introduction
Reasoning about actions is an important area within knowl-
edge representation and reasoning. Several logic-based lan-
guages for representing actions have been proposed (see
e.g.,[Gelfond and Lifschitz, 1998; Giunchigliaet al., 2004;
Son and Baral, 2001; Eiteret al., 2004]), and various rea-
soning problems about actions have been considered. The
most prominent among them are temporal projection (infer-
ence about the state after a sequence of actions occurred),
reasoning about the initial state after a sequence of actions
occurred, and plan generation (generate a sequence of actions
which takes the agent from an initial state to a goal state).

We study another reasoning problem about actions, namely
the problem of undoing the effects of an execution of an

∗This work was supported by FWF (Austrian Science Fund) un-
der project P16536-N04. The work of the second author was carried
out while she visited TU Wien. The third author was funded by an
APART grant of the Austrian Academy of Sciences.

action sequence, by executing other actions. For exam-
ple, after doing the actiongo(home, office), the action
go(office, home) may reverse its effects and bring the agent
back to her previous state. If this holds regardless of the state
in which the agent was before doinggo(home, office) and
afterwards, thengo(office, home) is called areverse action
for go(home, office). If, more generally, a sequence of ac-
tionsR = B1, . . . , Bm is guaranteed to bring the agent back
to the state before executing a sequenceAS = A1, . . . , Bn,
thenR is called areverse planfor AS. For example,R =
go(office, pub), go(pub, home) may be a reverse plan for
AS = go(home, bus stop), go(bus stop, office).

Undo actions are well-studied in the area of databases,
where they are a standard method for error recovery. In
a more general context of plan execution and recovery,
[Hayashiet al., 2002; 2004] use undo actions for execution of
plans by mobile agents in a dynamic environment. However,
the undo actions (one for each action) need to be specified
(manually) by the user. It therefore is desirable to have tools
which automatically generate undo actions, or more gener-
ally, reverse plans. This raises the following questions: given
an action domain and an actionA, does there exist a reverse
action forA? More generally, given a sequence of actions
AS, does there exist a reverse plan forAS? If so, how can a
reverse action or plan be efficiently computed? From a com-
putational point of view, can reverse actions or plans be fruit-
fully exploited for efficient backtracking in action execution?

Backtracking may be considered for various reasons, like
to restart a plan (e.g., when the execution of the plan fails
due to some undesired effects of an action in a nondetermin-
istic environment), or to switch from the current plan to one
which is a better (or safer) in the light of new information.
When the current state and the state we want to backtrack to
are known, then the problem amounts to a vanilla planning
problem, which is intractable in general. However, the prob-
lem is different if the backtrack state is unknown.

Motivated by these questions, we study computational as-
pects of action reversals. The main contributions of this paper
are as follows.

• We formally define the notions of a reverse action and
a reverse plan for actions. Rather than to commit to a
particular action language capable of modelling nondeter-
ministic effects, such asC+ [Giunchiglia et al., 2004] or
K [Eiter et al., 2004], we use here a generic transition-based



framework for representing actions as in[Rintanen, 1999;
Turner, 2002], using propositional logic as a specification lan-
guage. Besides nondeterminism, it also accommodates con-
current actions and dynamic worlds. We extend the defini-
tions toconditional reversals, considering also partial knowl-
edge about the current state and the state before the execution.

• We thoroughly analyze the complexity of action reversals,
and characterize the complexity of recognizing and deciding
existence of reverse actions and plans, both for plain as well
as for conditional reversals.

• Unsurprisingly, action reversal is intractable in general.
For monitoring applications, we therefore present a knowl-
edge compilation method. It constructs offline areverse plan
library from which reversals can be online computed in poly-
nomial (often, linear) time for important classes of instances.

Our results shed light on the complexity of action rever-
sals, and can be easily customized to particular action lan-
guages likeC+ orK. Our algorithms for reverse plan assem-
bly suggest action reversal as a complementary method for
efficient backtracking (if no reverse plan exists, choose some
other method). For further in-depth material and proofs for
all results of this paper, we refer to[Eiteret al., 2006].

2 Action Representation Framework
Following [Turner, 2002], let A be a set of action symbols
andF be a disjoint set of fluent symbols, which are viewed
as propositional atoms. The set of states of an action domain
is encoded by the models of a propositional formulastate(F)
overF . Let act(F ,A,F ′) be a formula overF ∪ A ∪ F ′,
whereF ′ = {f ′ | f ∈ F}. Then

tr (F ,A,F ′) = state(F) ∧ act(F ,A,F ′) ∧ state(F ′) (1)

encodes the set of transitions that corresponds to its models.
That is, in a transition, the start state corresponds to an as-
signmentS to F ,1 the (concurrent) action execution (or oc-
currence) to an assignmentA to A, and the end state to an
assignmentS′ toF ′.

Example 1 [Giunchiglia et al., 2004] Putting a
puppy into water makes the puppy wet, and drying
a puppy with a towel makes it dry. With the flu-
ents F = {inWater ,wet}, and the action symbols
A = {putIntoWater, dryWithTowel}, the states can be
described by the formulastate(F) = inWater ⊃ wet .
Since there are three assignments toF satisfyingstate(F)
({inWater ,wet}, {¬inWater ,wet}, {¬inWater ,¬wet})
there are three states:{inWater ,wet}, {wet}, {}. The
action occurrences can be defined through

act(F ,A,F ′) =
(inWater ′ ≡ inWater ∨ putIntoWater) ∧
(wet ′ ≡ (wet ∧ ¬dryWithTowel) ∨ putIntoWater) ∧
(dryWithTowel ⊃ (¬inWater ∧ ¬putIntoWater))

By the last line,dryWithTowel is executable ifinWater
is false, but not concurrently withputIntoWater . For ex-
ample, the assignment{¬inWater , wet , dryWithTowel ,

1“Assignment toS” means an assignment of truth values to the
symbols inS.

¬putIntoWater , ¬inWater ′, ¬wet ′} satisfiestr (F ,A,F ′);
therefore, it describes a transition from the stateS =
{wet} to the stateS′ = {} by executing the actionA =
{dryWithTowel}. 2

The meaning of a domain description can be represented
by a transition diagram, which is a directed labelled graph
whose nodes are the states and whose edges correspond to
action occurrences. Atrajectory of length n is an alter-
nating sequenceS0, A0, S1, . . . , Sn−1, An−1, Snof statesSi

and action occurrencesAi, such thatS0
A0→ S1

A1→, . . . ,

Sn−1
An−1→ Sn is a labelled path in the graph. The trajectory

can be obtained from a corresponding model of the formula
trn(F ,A) =

∧n−1
t=0 tr (Ft,At,Ft+1) where eachFi (resp.,

eachAi) results by adding time stampi to eachf ∈ F (resp.,
eacha ∈ A).

An action sequenceof lengthn is a sequenceAS = 〈A0,
. . . , An−1〉, where eachAi (0 ≤ i < n) is a (concurrent)
action occurrence. We use|AS| to denote the length ofA.
Note that in general,|AS| is different from the total number
of single action occurrences inAS.

In what follows,F ≡ F ′ denotes
∧

f∈F f ≡ f ′.

3 Execution Reversals
After an agent executes an sequence〈A0, . . . , Ai〉, it may be
sometimes desirable that the effects of the whole or part of
the action sequence be undone, such that the agent is back in
the stateSj , j < i, which she had reached after executing the
actionsA0, . . . , Aj−1.

An action can be undone by executing one of its “reverse
actions” or by executing a “reverse plan”. We define a re-
verse of an action below relative to a given action description.

Definition 1 An actionA′ is a reverse actionfor A, if, for all
F andF ′, the formularevAct(F ,F ′;A,A′), defined as

tr(F , A,F ′) ⊃
(tr(F ′, A′,F) ∧ ∀F ′′ (tr(F ′, A′,F ′′) ⊃ F ≡ F ′′))

is a tautology (i.e.,∀F∀F ′revAct(F ,F ′;A,A′) holds).

The formula above expresses the following condition about
actionsA andA′. Take any two statesS, S′ (described by the
assignments to fluents inF andF ′ respectively) such that
executingA at S leads toS′. Then executingA′ at stateS′

always leads toS.
Many of the benchmarks used in planning are from the

transportation domain (logistics, blocks world, grid, etc.).
E.g., moving fromx to y is the reverse action of moving from
y to x, putting down an object is the reverse of picking it up.

Definition 2 A reverse plan for an actionA is a sequence
〈A′

0, . . . , A
′
m−1〉, m≥ 0, of actions such that, for allF and

F ′, the following formula is true:

revPlan(F ,F ′;A, [A′
0, . . . , A

′
m−1]) =

tr(F , A,F ′) ⊃
∀m

i=1Fi ∃m
j=1F ′

j

(
F0 ≡ F ′ ⊃( ∧m−1

t=0 (trt(F , A′) ⊃ tr(Ft, A
′
t,F ′

t+1))∧
(trm(F , A′) ⊃ Fm ≡ F)

))
.



The formula above expresses the following condition about
an actionA and an action sequence〈A′

0, . . . , A
′
m−1〉. Take

any two statesS, S′ (described by the assignments to flu-
ents inF resp.F ′) such that executingA at S leads toS′.
Then the action sequence〈A′

0, . . . , A
′
m−1〉 is executable at

stateS′, and it always leads toS. The executability condi-
tion of 〈A′

0, . . . , A
′
m−1〉 is described above by the formula on

the second line. Note thatrevPlan(F ,F ′;A, [A′
0]) is equiva-

lent torevAct(F ,F ′;A,A′
0). For instance, a reverse plan for

booking online a room may be first calling the hotel in which
the room is reserved, and then cancelling the reservation.

We can further generalize the notion of reversing by con-
sidering action sequences, rather than actions, to be reversed.
There are two motivations for this generalization: It might
not always be possible to find reverse plans for single actions,
but only for sequences of actions. Also, a reverse plan for an
action sequence might be shorter than a reverse plan obtained
by concatenating reverse plans for subsequences.

Definition 3 A sequence〈A′
0, . . . , A

′
m−1〉 (m ≥ 0) of ac-

tions is areverse plan for an action sequence〈A0, . . . , Ak−1〉
(k > 0), if, for all F andF ′, the following formula is true:

multiRev(F ,F ′; [A0, . . . , Ak−1], [A′
0, . . . , A

′
m−1]) =

∃k
i=0Fi

(
F ≡ F0 ∧ trk(F , A) ∧ F ′ ≡ Fk

)
⊃

∀m
j=0F ′

j ∃m
h=1F ′′

h

(
F ′

0 ≡ F ′ ⊃∧m−1
t=0

(
trt(F ′, A′) ⊃ tr(F ′

t, A
′
t,F ′′

t+1)
)

∧(trm(F ′, A′) ⊃ F ′
m ≡ F)

)
.

The formula above is very similar torevPlan(F ,F ′; A, [A0,
. . . , Am−1]). The only difference is that, in the premise of the
formula, a trajectory is considered instead of a single tran-
sition. Note thatmultiRev(F ,F ′; [A0], [A′

0, . . . , A
′
m]) is

equivalent torevPlan(F ,F ′; A0, [A′
0, . . . , A

′
m]).

So far, a reverse plan has been defined for an action se-
quence at any state reachable by that sequence. However,
at some such states, an action sequence may not admit any
reverse plan. That is, an action sequence may have a re-
verse plan under some conditions, that do not necessarily hold
at every reachable state. Furthermore, if some information
about the state which we want to reach by reversing actions
is available, e.g., values of some fluents obtained by sens-
ing, then the applicability of a reverse plan might be possible
depending on this information. To make execution reversals
applicable in such situations, we generalize reverse plans to
“conditional reverse plans” as follows.

Definition 4 A sequence〈A′
0, . . . , A

′
m−1〉 (m ≥ 0) of

actions is a φ;ψ-reverse plan for an action sequence
〈A0, . . . , Ak−1〉 (k > 0) if, for anyF andF ′, the formula

ψ(F) ∧ φ(F ′) ⊃
multiRev(F ,F ′; [A0, . . . , Ak−1], [A′

0, . . . , A
′
m−1])

is true, whereφ(F ′) is overF ′ and andψ(F) overF .

For the case whereψ(F) ≡ >, we simply writeφ-reverse
plan forφ;ψ-reverse plan. For instance, a conditional reverse
plan for booking a room may be first calling the hotel in which
the room is reserved, and then cancelling the reservation, with
the condition that another room is available at another hotel.

A question which comes up naturally is whether it is possi-
ble to formulate conditions, which are necessary or sufficient
for the existence of a reverse action for a given action. In the
following, we briefly discuss two conditions, of which one is
necessary, while the other one is sufficient.

Let us first focus on the necessary condition. Imagine the
following situation: The actionA, which is to be reversed,
results in the same stateS when executed in two different
statesS′ andS′′, i.e.,tr (S′, A, S) andtr (S′′, A, S) both hold.
It is then impossible to find a reverse plan〈A′

0, . . . , A
′
m−1〉

for A. If it did, then if someS0, . . . , Sm existed such that
trm(S,A′), then bothSm = S′ andSm = S′′ would hold,
which is impossible, as we assumed thatS′ 6= S′′. This nec-
essary condition can be stated more generally as follows:

Proposition 1 If a φ;ψ-reverse plan forA = 〈A0, . . . ,
An−1〉 exists, then, for every two sequencesS = S0, . . . , Sn

and S′ = S′0, . . . , S
′
n of states such that trn(S,A),

trn(S′, A), ψ(S0), andψ(S′0) hold, it holds thatSn 6= S′n.

We have found also a sufficient condition, motivated by the
following property of functions: A functionf is involutoryiff
f(f(x)) = x for eachx in the domain off . We say that an
action sequenceA0, . . . , Am−1 is (ψ-)involutory, if, for every
stateS (satisfyingψ), the following hold:

• for every sequenceS = S0, . . . , Sm of states such
that trm(S,A) holds, there exist a sequenceSm =
S′0, . . . , S

′
m = S of states such thattrm(S′, A) holds;

• for every two sequencesS = S0, . . . , Sm andSm =
S′0, . . . , S

′
m of states such thattrm(S,A) ∧ trm(S′, A)

holds, it holds thatS′m = S.

Therefore, an action is involutory, if executing the action
twice in any state, where the action is executable, always re-
sults in the starting state. An example of an involutory action
is atoggle action: If a simple light switch is toggled twice, it
will always be in the same state as before. Then a sufficient
condition can be stated as follows:

Proposition 2 Aψ-involutory action sequenceAS is always
>;ψ-reversible, and a>;ψ-reverse plan isAS itself.

4 Complexity Results
We study the complexity of the following problems related to
the computation of execution reversals with respect to a given
action domain description:

(P1) for two given action sequencesAS andR, and given
formulasφ andψ over fluent symbols, recognizing whether
R is aφ;ψ-reverse plan forAS;

(P2) for a given action sequenceAS, deciding whether
there exist an action sequenceR of a polynomially bounded
length, and formulasφ andψ over fluent symbols, such thatR
is aφ;ψ-reverse plan forAS, and thatφ(S′) holds for some
stateS′ reached byAS from some stateS such thatψ(S)
holds;

(P3) for a given action sequenceAS and formulasφ andψ
over fluent symbols, deciding whether there exists an action
sequenceR of polynomially bounded length such thatR is a
φ;ψ-reverse plan forAS.

For our discussion of the computational complexities of
these problems, recall the following sequence of classes from



Problem |R| = 1 |R| = 2 |R| > 2
(P1) coNP Πp

2 Πp
2

(P2) Σp
2 Σp

2 Σp
3

(P3) Σp
2 Σp

3 Σp
3

Table 1: Complexities of (P1)–(P3), in terms of completeness

the polynomial hierarchy: First,Σp
0 = Πp

0 = P; and for all
k ≥ 1, Σp

k = NPΣp
k−1 andΠp

k = coNPΣp
k−1 . Each complex-

ity class at each levelk (k ≥ 1) of the hierarchy, includes all
complexity classes at lower levels. For further background on
complexity, we refer the reader to[Papadimitriou, 1994].

The complexity results for problems (P1)–(P3) are summa-
rized in Table 1. According to these results, checking whether
an action sequence is aφ;ψ-reverse plan for another action
sequence (i.e., (P1)) is easier than finding aφ;ψ-reverse plan
for an action sequence (i.e., (P2) and (P3)). Finding aφ;ψ-
reverse plan, whereφ andψ are given is harder than finding a
φ;ψ-reverse plan for arbitraryφ andψ for |R| = 2, but is of
the same complexity in all other cases. These problems get
more difficult when the length ofR increases: Problems (P1)
and (P3) get more difficult when|R| ≥ 2, while problem (P2)
gets more difficult when|R| > 2.

Intuitively, theΣp
3-completeness of (P2) and (P3) is due to

the following intermingled sources of complexity:
(i) the exponentially many action sequencesR of a polyno-

mially-bounded length and, in case of (P2), the exponentially
many formulasφ andψ which need to be considered,

(ii) the test that for all statesS andS′ such thatφ(S′) and
ψ(S) hold andS′ is reached fromS after execution ofAS,
every execution ofR which starts inS′ ends inS, and (iii)
the test that each partial execution ofR starting in some state
S′ as in (ii) can be continued with the next action, i.e., the
execution is not “stuck.”

Membership of problem (P1) inΠp
2 is straightforward from

Definitions 3 and 4. Theφ;ψ-reverse plan property is easily
rewritten to a prefix quantified Boolean formula (QBF) with
∀∃ pattern; evaluating such a formula is well-known to be
in Πp

2. Problem (P3) is thus inΣp
3, since aφ;ψ-reverse plan

can first be guessed and then checked with aΠp
2 oracle. In

problem (P2),φ andψ are w.l.o.g. conjunctions of literals
and can be guessed along with the plan; the extra condition is
checkable with an NP oracle. Hardness is shown by suitable
reductions of evaluating QBFs.

When limiting the length of the reverse plan, some quan-
tifiers vanish. Informally, when|R| = 1, source (iii) disap-
pears, and similarly when|R| = 2 for (P2). The reason is
that ifR = 〈A1〉 and if the current stateS′ and the stateS to
which we want to get back are known, then in the light of (ii)
we just need to check whether〈S′, A1, S〉 is a valid transition,
which is polynomial. In the case of (P2) andR = 〈A1, A2〉,
we similarly just need to check after reachingS′′ from S′ by
executingA1 whether〈S′′, A2, S〉 is a valid transition. Com-
bined with other properties, this yields theΣp

2 upper bound.
In problems (P1) and (P3), we do not check that the for-

mulasφ andψ are actually satisfied at some statesS′ and
S, respectively, such thatS′ is reached fromS be execution
ofAS (if no such states exist, the problem is trivially solved).

Checking this condition changes the complexity of (P1) when
|R| = 1 from coNP toDP (which is the “conjunction” ofNP
andcoNP); it does not change the complexity of (P3).

The complexity of problems can be lower under some con-
ditions. For example, if the reverse plan is short (i.e., has
a length bounded by a constant) and contains no parallel ac-
tions, andφ, ψ are formulas from a polynomial size set of for-
mulas, then only a polynomial number of candidates forφ;ψ-
reverse plans need to be checked for (P3). If the executability
of actions can be determined in polynomial time then (P1)
getscoNP-complete, and (P2) and (P3) getΣp

2-complete.

Tractable cases. Also tractability can be gained in certain
cases. For example, ifφ andψ are conjunctions of literals
which have a single model and the description of transitions
tr (F ,A,F ′) is such that for given fluent valuesS (resp.,S′)
and action occurrencesA all fluent valuesS′ (resp.,S) such
thattr (S,A, S′) holds can be determined in polynomial time,
then finding a shortφ;ψ-reverse plan without parallel actions
for a short action sequence is feasible in polynomial time.
Thus in particular, reversal of the current state in the exe-
cution of an action sequence is possible in polynomial time
under these conditions.

5 Computation of Reverse Plans
We compute reverse plans in the spirit of knowledge com-
pilation [Cadoli and Donini, 1997]: first we compute offline
reverse plans for some action sequences, and then use this
information online to construct a concrete reverse plan for a
given action sequence. In the offline phase, the computed
reverse plans for action sequences are collected in a library.
This library may not contain all possible reverse plans for all
action sequences (since exponentially many of them exist),
but a polynomial number of reverse plans for short action se-
quences (typically, of a few steps, and the reverse plans are
short themselves). From these short reverse plans, one might
efficiently compose online reverse plans for longer action se-
quences. For example, a reverse plan〈B2, B1〉 for the action
sequence〈A1, A2〉 can be composed of the two reverse ac-
tionsB1 andB2 that undo the effects of two actionsA1 and
A2, respectively. As we show later, such a construction of
a reverse plan for an action sequence, from the reverse plan
library, can be done efficiently.

We define a reverse plan items and libraries as follows.

Definition 5 A reverse plan item (RPI)is a tuple of the form
(AS,R, φ, ψ) such thatR is a φ;ψ-reverse plan for the
(nonempty) action sequenceAS, whereφ = φ(F) andψ =
ψ(F). An RPI issingle-step, if |AS| = 1, i.e.,AS consists of
a single action, andunconditional, if φ = ψ = true.

Definition 6 A reverse plan libraryL is a (finite) set of RPIs;
it is calledsingle-step(resp.,unconditional), if each RPI in it
is single-step (resp., unconditional).

There are various ways to compute RPIs to fill a reverse
plan library. Thanks to the logical framework and definitions
of reverse actions and plans, it is fairly straightforward to en-
code the problem of actually finding an RPI(AS,R, φ, ψ) by
solving QBFs, which has been proposed as a problem solving
method in the planning domain earlier, e.g.,[Rintanen, 1999].



Algorithm REVERSE(AS,Π, L)

Input : Action sequenceAS = 〈A0, . . . , Ai−1〉, i ≥ 0,
sequence of formulas (percepts)Π = π0(F), . . . ,
πi(F), reverse plan libraryL;

Output : Reverse planRP for AS from Π andL or “no”

(01) for each j = 0, ..., i−1 do S[j] := ⊥;
(02) S[i] := >; /* trivially, Si is reversible to itself */
(03) RP := REVERSE1(i);
(04) if RP = “no” then return “no”
(05) else return (RP ,S[0])

Figure 1: Algorithm REVERSE to compute execution rever-
sals using a multi-step plan library.

Another possibility is to reduce the problem to solving con-
formant planning problems defined relative to a modification
of D. Due to space reasons, we cannot give the details, and
instead focus on the more interesting problem of online re-
verse plan computation.

At runtime, when we do try to assemble a reverse plan,
we can think of three increasingly expressive scenarios, de-
pending on available state information in form ofperceptsπj

about some statesSj , j = 0, 1, . . . , i, of the execution:
1. There is no information about the current state,Si, and

past statesS0, S1, . . . , Si−1. In this situation, only uncon-
ditional reversal plans, assembled from unconditional RPIs,
might be used.

2. (Partial) information about the current stateSi is avail-
able, expressed by a formulaπi(F) such thatSi is one of its
models, but no information about the past states. In this case,
we can also make use of conditional RPIs.

3. (Partial) information about the whole execution history
is available, formalized in terms of a sequenceΠ = π0, . . . ,
πi of formulas over fluent symbols, such that the stateSj is
a model ofπj(F), for eachj = 0, 1, . . . , i. Here, we might
exploit an even larger set of RPIs.

Clearly, scenario 3 generalizes the other ones; due to space
limitations, we thus focus here on this general scenario.

When we consider a multi-step plan library, i.e., not
necessarily a single-step plan library, finding a reverse plan
RP is trickier sinceRP may be assembled fromL in many
different ways, and state conditions might exclude some
of them. For instance, take AS =〈A,B,C〉, and L =
{(〈A,B〉, 〈D〉, φ1,>), (〈C〉, 〈E〉, φ2,>), (〈A〉, 〈F 〉, φ3,>),
(〈B,C〉, 〈G〉, φ4,>)}. We can assemble the action sequence
〈A,B,C〉 from 〈A,B〉 and 〈C〉, or from 〈A〉 and 〈B,C〉.
However, in the former case,φ1 might be false at the state
resulting from reversingC byE, while, in the latter case,φ3

might be true at the state resulting from reversing the action
sequence〈B,C〉 by the actionG. Thus, we need to consider
choices and constraints when building a reverse plan.

Fortunately, this is not a source of intractability, and a re-
verse plan fromL can be found in polynomial time (if one
exists) by the algorithm REVERSEin Figure 1.

The auxiliary arrayS in the algorithms is used for keeping
information to which statesSj a reversal is established. The
main algorithm, REVERSE, initializes everyS[j] (j < i) of S

Algorithm REVERSE1(j)

Input : Integerj, 0 ≤ j ≤ i (=|AS|);
Output : Reverse planRP for 〈A0, . . . , Aj−1〉

from π0, . . . , πj , or “no” if none exists

(01) if j = 0 then return ε ; /* empty plan */
(02) for each (As,R, φ, ψ) ∈ L s.t.As is a suffix

of 〈A0, . . . , Aj−1〉 andS[j−|A|s] = ⊥ do
(03) if πj ⊃ φ andπj−|AS| ⊃ ψ then
(04) begin
(05) S[j−|As|] := >; /* reversing toSj possible */
(06) RP := REVERSE1(j−|As|);
(07) if RP 6= “no” then return R + RP
(08) end
(09) return “no”

Figure 2: Algorithm REVERSE1, in the scope of REVERSE.

to⊥ since this is false initially. The recursive algorithm RE-
VERSE1 updatesS whenever new knowledge is gained. For
instance, if the actionAi−1 can be reversed at stateSi, then
we know that a reversal toSi−1 exists and modifyS[i − 1]
accordingly. Having this information available inS helps us
find a reverse plan for the action sequenceAS fromL. Also,
it prevents us explore the same search space over and over.

The algorithm REVERSEstarts constructing a reverse plan
for an action sequence〈A0, . . . , Aj−1〉 by considering its suf-
fixesAs. For efficiently determining allAs in L, we can em-
ploy search structures such as a trie (or indexed trie) to repre-
sentL: consider each node of the trie labelled by an action, so
that the path from the root to the node would describe an ac-
tion sequence in reverse order. If the node describes an action
sequenceAs such that(As,R, φ, ψ) is in L, then the node is
linked to a list of all RPIs of form(As,R′, φ′, ψ′) in L.

The next theorem bounds the running time of algorithm
REVERSEand states its correctness.

Theorem 3 (i) REVERSE(AS,Π, L) has running time
O(|AS|(|L| · evalmax(A) + min(ASmax(L), |AS|))),
whereevalmax(Π, L) bounds the time to evaluateπj ⊃
φ andπj ⊃ ψ for anyπj in Π and formulasφ, ψ in L;
andASmax(L) = max{|As| | (As,R, φ, ψ) ∈ L}.

(ii) REVERSE(AS,Π, L) correctly outputs, relative toL, a
reverse planRP for AS and Π or it determines that
such a reverse plan does not exist.

Corollary 4 REVERSE(AS,Π, L) is polynomial, if all per-
cepts inΠ are DNFs and all formulas inL arek-term DNFs,
i.e.,

∨k
j=1 ti,j wherek is bounded by a constant, or CNFs.

We remark that in an application setting,|AS| as well as
reverse planR are expected to be small (bounded by a con-
stant) and perceptsπi and the formulasφ, ψ consist of a few
literals. In this case, the running time isO(|L|) i.e., linear
in the size of the reverse plan libraryL. If, moreover, only
few of the entries in the reverse plan library match, then the
running time can be drastically shorter.



6 Related Work
Our work on undoing the execution of an action sequence has
been partly motivated by[Hayashiet al., 2002; 2004], where
the user has to provide the reversal information. Here, we
describe a method which allows for automatic discovery of
this knowledge. Moreover, we describe a flexible online as-
sembly of reverse plans from a reverse plan library. While
[Hayashiet al., 2002; 2004] just consider single actions and
associated reverse actions, this library may contain arbitrary
conditional action sequences, which the reverse plan algo-
rithm can flexibly use. Our work is further motivated by ap-
proaches to plan recovery in logic-based monitoring frame-
works [De Giacomoet al., 1998; Soutchanski, 1999; 2003;
Fichtneret al., 2003]. However, they either do not consider
action reversals or define it in a different way, usually com-
bined with goal reachability.

The idea of backtracking for recovery in execution mon-
itoring is similar in spirit to “reverse execution” in program
debugging[Zelkowitz, 1973; Agrawalet al., 1991], where all
actions are undone to reach a “stable” state. Our method is
more general, since no execution history is required a priori.
Undoing and redoing actions on the database is at the heart of
recovery in database management systems. However, also in
this context, a log of the action history is available, and so the
problem is significantly different.

The complexity of planning in different action languages
and the framework considered here has been studied e.g. in
[Baral et al., 2000; Liberatore, 1997; Turner, 2002; Rinta-
nen, 1999; Eiteret al., 2004]. Conformant planning (decide,
given an action domain and formulasinit(F) andgoal(F)
describing the initial state (not necessarily unique) and a goal
state, respectively, whether there exists some action sequence
AS whose execution in every initial state makesgoal true)
is related to finding a reverse plan, and has similar complex-
ity for plans of polynomial length (Σp

3-completeness). How-
ever, the problem is different: In action reversal, we lack a
(known) goal to establish. Moreover, conformant planning
is Σp

3-complete already for plans of length 1, and recogniz-
ing conformant plans of this length isΠp

2-complete[Turner,
2002], differing from the results in Table 1.

7 Conclusion
We formally defined undo actions and reverse plans for an ac-
tion sequence, in the logic-based framework for action repre-
sentation from[Turner, 2002]. As we have shown, determin-
ing an undo action or reverse plan for an action sequence is
intractable in general (more precisely, complete for the class
Σp

2 respectivelyΣp
3 in the Polynomial Hierarchy). The in-

tractability is explained, on the one hand, by the intractability
of propositional logic underlying the framework, and, on the
other hand, by the intrinsic complexity of non-determinism;
nonetheless, tractability is gained under suitable restrictions.
To cope with intractability, we presented a knowledge compi-
lation approach by which undo actions and reverse plans can
be efficiently constructed (under suitable conditions, in lin-
ear time) from a reverse plan library. An implementation of
the compilation algorithms, including the generation of con-
ditional reverse plan libraries, is currently in progress.
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