1

Vienna University of Technology

On Reversing Actions: Algorithms and Complexity*

Thomas Eiter

eiter@kr.tuwien.ac.at

Abstract

Reversing actions is the following problem: After
executing a sequence of actions, which sequence of
actions brings the agent back to the state just before
this execution (an action reversal). Notably, this
problem is different from a vanilla planning prob-
lem since the state we have to get back to is in gen-
eral unknown. It emerges, for example, if an agent
needs to find out which action sequences are un-
doable, and which ones are committed choices. It
has applications related to plan execution and mon-
itoring in nondeterministic domains, such as recov-
ering from a failed execution by partially undoing
the plan, dynamically switching from one executed
plan to another, or restarting plans. We formal-
ize action reversal in a logic-based action frame-
work and characterize its computational complex-
ity. Since unsurprisingly, the problem is intractable
in general, we present a knowledge compilation
approach that constructs offline a reverse plan li-
brary for efficient (in some cases, linear time) on-
line computation of action reversals. Our results
for the generic framework can be easily applied for
expressive action languages sucltasor K.

Introduction

Esra Erdem
Sabanci University
esraerdem@sabanciuniv.edu

Wolfgang Faber
University of Calabria
faber@mat.unical.it

action sequence, by executing other actions. For exam-
ple, after doing the actioryo(home, office), the action
go(office, home) may reverse its effects and bring the agent
back to her previous state. If this holds regardless of the state
in which the agent was before doing(home, office) and
afterwards, theyo(office, home) is called areverse action

for go(home, office). If, more generally, a sequence of ac-
tionsR = By, ..., By, is guaranteed to bring the agent back
to the state before executing a sequedAce= A,,...,B,,
then R is called areverse plarfor AS. For example,R =
go(office, pub), go(pub, home) may be a reverse plan for
AS = go(home, bus_stop), go(bus_stop, office).

Undo actions are well-studied in the area of databases,
where they are a standard method for error recovery. In
a more general context of plan execution and recovery,
[Hayashiet al., 2002; 2004 use undo actions for execution of
plans by mobile agents in a dynamic environment. However,
the undo actions (one for each action) need to be specified
(manually) by the user. It therefore is desirable to have tools
which automatically generate undo actions, or more gener-
ally, reverse plans. This raises the following questions: given
an action domain and an actioh does there exist a reverse
action for A? More generally, given a sequence of actions
AS, does there exist a reverse plan fof? If so, how can a
reverse action or plan be efficiently computed? From a com-
putational point of view, can reverse actions or plans be fruit-
fully exploited for efficient backtracking in action execution?

Reasoning about actions is an important area within knowl- Backtracking may be considered for various reasons, like
edge representation and reasoning. Several logic-based |al§- restart a plan (e.g., when the execution of the plan fails
guages for representing actions have been proposed (sée€ to some undesired effects of an action in a nondetermin-
e.g.,[Gelfond and Lifschitz, 1998; Giunchigliet al., 2004; IStiC environment), or to switch from the current plan to one
Son and Baral, 2001; Eitest al, 2004), and various rea- Which is a better (or safer) in the light of new information.
soning problems about actions have been considered. TH&hen the current state and the state we want to_ backtraqk to
most prominent among them are temporal projection (inferare known, then the problem amounts to a vanilla planning
ence about the state after a sequence of actions occurredyoblem, which is intractable in general. However, the prob-
reasoning about the initial state after a sequence of actiorl§m is different if the backtrack state is unknown.
occurred, and plan generation (generate a sequence of actiondVlotivated by these questions, we study computational as-
which takes the agent from an initial state to a goal state). Pects of action reversals. The main contributions of this paper
We study another reasoning problem about actions, nameR{€ as follows.

the problem of undoing the effects of an execution of ane \We formally define the notions of a reverse action and

“This work was supported by FWF (Austrian Science Fund) un-& "€verse plan for actions. Rather than to commit to a
der project P16536-N04. The work of the second author was carrieRarticular action language capable of modelling nondeter-
out while she visited TU Wien. The third author was funded by anministic effects, such ag+ [Giunchigliaet al, 2004 or
APART grant of the Austrian Academy of Sciences. K [Eiter et al., 2004, we use here a generic transition-based

framework for representing actions as [Rintanen, 1999; —putInto Water, —~inWater’, —~wet'} satisfiesr (F, A, F');
Turner, 2002, using propositional logic as a specification lan- therefore, it describes a transition from the state =
guage. Besides nondeterminism, it also accommodates cofiwet} to the stateS’” = {} by executing the actioml =
current actions and dynamic worlds. We extend the defini{ dry With Towel}. O

tions toconditional reversalsconsidering also partial knowl-

. The meaning of a domain description can be represented
edge about the current state and the state before the execunw a transition diagram, which is a directed labelled graph

e We thoroughly analyze the complexity of action reversalswhose nodes are the states and whose edges correspond to
and characterize the complexity of recognizing and decidingction occurrences. Arajectory of length n is an alter-
existence of reverse actions and plans, both for plain as wetlating sequencéy, Ag, S1, ..., Sn_1, An_1, S,0f statess;
as for conditional reversals. and action occurrenced;, such thatS, 49 S1 ’i%, ceey
isi i is i i A . . .
D e apuaclable h gsneraks, ' s, s labeled path nth graph The trjecor
ing app ' p can be obtained from a corresponding model of the formula
edge compilation method. It constructs offlinesgerse plan

n—1
library from which reversals can be online computed in pon—trn(}_’ A) = Nico U (Fe, Ar, Fig1) yvhere eact; (resp.,
nomial (often, linear) time for important classes of instancesggghmie) T‘)S“'ts by adding time stamigio eachf < 7 (resp.,
a .

Our results shed light on the complexity of action rever- an action sequencef lengthn is a sequencel S = (A,
sals, and can be easily customized to particular action lan- A,_1), where eachd; (0 < i < n)is a (concurrer;t)
guages likec+ or K. Our algorithms for reverse plan assem- 5ction occurrence. We uselS| to denote the length ofl.

bly suggest action reversal as a complementary method fQqote that in general, AS| is different from the total number
efficient backtracking (if no reverse plan exists, choose somgg single action occurrences iS.

other method). For further in-depth material and proofs for | what follows,F = ' denotes ;. f = f'.
all results of this paper, we refer [&iteret al, 2004. fek

3 Execution Reversals

2 Action Representation Framework .

. . After an agent executes an sequefds, ..., A;), it may be
Following [Turner, 2002, let A be a set of action symbols gometimes desirable that the effects of the whole or part of
and ¥ be a disjoint set of fluent symbols, which are viewed e action sequence be undone, such that the agent is back in

as propositional atoms. The set of states of an action domaip,q stateS;, j < i, which she had reached after executing the
is encoded by the models of a propositional fornmsikateF) actionsAoj S A

over 7. Letact(F, A, ') be a formula over” U AU 7, An action can be undone by executing one of its “reverse
wheres” = {f"| f € F}. Then actions” or by executing a “reverse plan”. We define a re-
tr(F, A, F') = statdF) Anact(F, A, F') AstatgF') (1) verse of an action below relative to a given action description.

encodes the set of transitions that corresponds to its modelBefinition 1 An actionA’ is areverse actioffor 4, if, for all
That is, in a transition, the start state corresponds to an asf and ', the formularevAct(F, F'; A, A’), defined as
signmentsS to F,! the (concurrent) action execution (or oc- tr(F, A, F') >

curr_ence) to/an a/ssngnmeﬂtto A, and the end state to an (tr(F, A, F) AVF" (tr(F/, A, F") > F = F"))
assignment’ to F'.

Example 1 [Giunchiglia et al, 2004 Putting a 'S atautology (i.e.YFVF revAct(F,F'; A, A') holds).
puppy into water makes the puppy wet, and drying The formulaabove expresses the following condition about
a puppy with a towel makes it dry. With the flu- actionsA andA’. Take any two stateS, S’ (described by the
ents ¥ = {inWater,wet}, and the action symbols assignments to fluents i and 7’ respectively) such that
A = {putIntoWater, dryWithTowel}, the states can be executingA at.S leads toS’. Then executingd’ at stateS’
described by the formulatatd) = inWater D wet. always leads .

Since there are three assignmentsAaatisfying state F) Many of the benchmarks used in planning are from the
({inWater, wet}, {—inWater, wet }, {—~in Water, ~wet }) transportation domain (logistics, blocks world, grid, etc.).
there are three states:{inWater, wet}, {wet},{}. The E.g., moving from toy is the reverse action of moving from
action occurrences can be defined through y to x, putting down an object is the reverse of picking it up.
act(F, A, F') = Definition 2 A reverse plan for an actiod is a sequence
(ifn, Water' = inWater V putinto Wa,ter) A <A67 . ,A;n71>, m >0, of actions such that, for alF and
(wet" = (wet A ~dryWithTowel) V putIntoWater) A F', the following formula is true:
(dryWithTowel D (—inWater A —putlnto Water)) revPlan(F, F; A, [Ab, ... AL _]) =
By the last line,dryWithTowel is executable ifin Water tr(F,A,F') D
is false, but not concurrently withutinto Water. For ex- " m o
ample, the assignmenrt-inWater, wet, dryWithTowel, Vila Fi 3 Fj (fO =72

m—1
tr A’ tr Al F] A
l“Assignment toS” means an assignment of truth values to the (Ao (tf}-’) DU (P AL Fran))
symbols inS. (trp(F,A') D Fi = }—)))

The formula above expresses the following condition about A question which comes up naturally is whether it is possi-
an actionA and an action sequengdy,..., A’ ;). Take ble to formulate conditions, which are necessary or sufficient
any two statesS, S’ (described by the assignments to flu- for the existence of a reverse action for a given action. In the
ents inF resp.F’) such that executing!l at S leads toS’. following, we briefly discuss two conditions, of which one is
Then the action sequencglj,, ..., A!, ;) is executable at necessary, while the other one is sufficient.
stateS’, and it always leads t6. The executability condi- Let us first focus on the necessary condition. Imagine the
tion of (A, ..., Al) is described above by the formula on following situation: The actiom, which is to be reversed,
the second line. Note thatvPlan(F, F'; A, [Ap]) is equiva- results in the same state when executed in two different
lent torevAct(F, F'; A, Aj). For instance, a reverse plan for statesS’ andS”,i.e.,tr (S, A, .S) andtr (S”, A, S) both hold.
booking online a room may be first calling the hotel in which It is then impossible to find a reverse pléAj,..., A/, ;)
the room is reserved, and then cancelling the reservation. for A. If it did, then if someS,, ..., S,, existed such that

We can further generalize the notion of reversing by con-r,, (S, A’), then bothS,, = S" andS,, = S” would hold,
sidering action sequences, rather than actions, to be reverseathich is impossible, as we assumed that£ S”. This nec-
There are two motivations for this generalization: It might essary condition can be stated more generally as follows:

not always be possible to find reverse plans for single actiongsroposition 1 If a ¢; y-reverse plan forA = (Ao,

but only for sequences of actions. Also, a reverse plan forany .y exists, then, for every two sequences: Sy Sn’
action sequence might be shorter than a reverse plan obtaingdlq g/ — Si....,S" of states such that :U(SvA),
by concatenating reverse plans for subsequences. tr, (S, A), 1/)(50)7. anaqﬁst’)) hold, it holds thats,, g
Definition 3 A sequencgAy, ..., A;, ;) (m > 0) of ac- We have found also a sufficient condition, motivated by the
tions is areverse plan for an action sequerfe®, ..., Ax_1) following property of functions: A functiorf is involutoryiff
(k > 0), if, for all 7 andF’, the following formula is true: f(f(z)) = x for eachz in the domain off. We say that an
multiRev(F, F'; [Ao, ..., Ap_1], [A}, ..., AL _]) = action sequencd, . .., A,,,—1 is (-)involutory, if, for every
stateS (satisfyingi)), the following hold:
3?:0-72(-7: = fo A trk(f, A) ANF = fk) D)
B A o for every sequenceé = S(),....,Sm of states such
VitoFs I Fh (Fo=F'D that tr,,,(S, A) holds, there exist a sequencg, =
ot (FL AN Dt (FL AL FLY)) Sy, ..., S, = S of states such that,, (5’, A) holds;
A(tro (F, AN S Fl = F)). o for every two sequenceS = Sy,...,S,, andS,, =
(tren() ")) Sp, - -+, Sy, Of states such that,, (S, A) Atr,(S’, A)
The formula above is very similar t@vPlan(F, F'; A, [Ao, holds, it holds thab;,, = S.

-, Ap—1]). The only difference is that, in the premise of the Therefore, an action is involutory, if executing the action
formula, a trajectory is considered instead of a single trantwice in any state, where the action is executable, always re-
sition. Note thatmultiRev(F, F'; [Ao], [Ap, ..., A},]) IS sults in the starting state. An example of an involutory action
equivalent torevPlan(F, F'; Ao, [A}, ..., AL]). is atoggle action: If a simple light switch is toggled twice, it

So far, a reverse plan has been defined for an action sevill always be in the same state as before. Then a sufficient
guence at any state reachable by that sequence. Howevebndition can be stated as follows:

at some such states, an action sequence may not admit apy,sition 2 A y-involutory action sequencas is always
reverse plan. That is, an action sequence may have a ré-. 1o ersible, and a; v-reverse plan isA5S itself.
verse plan under some conditions, that do not necessarily hold’ ' ’

at every reachable state. Furthermore, if some informatio :
about the state which we want to reach by reversing action%1 Complexity Results
is available, e.g., values of some fluents obtained by sendVe study the complexity of the following problems related to
ing, then the applicability of a reverse plan might be possibléhe computation of execution reversals with respect to a given
depending on this information. To make execution reversaléction domain description:
applicable in such situations, we generalize reverse plans to (P1) for two given action sequencéss and R, and given
“conditional reverse plans" as follows. formuIangS andw ovelr f|¥|er4nt symbols, recognizing whether
_— , , R is ag;y-reverse plan foS;
B e 7" a1 St soatance,, (%2 10 & Gven acton sequences, decing wether
A A 7(k > 0) if, for any F and &, the formula there exist an action sequenBeof a polynomially bounded
(Ao, .. A1) ' y ' length, and formulag andy over fluent symbols, such th&t
Y(F)NG(F') D is a¢;y-reverse plan fordS, and thatp(S’) holds for some
multiRev(F, F'; [Ao, - .., Ak—1], [Ab, - s A1) stateS’ reached byAS from some stateS' such thaty(.S)
: . holds;
is true, wherep(7”) is overs” and andy)(F) over.f. (P3) for a given action sequengss and formulasp andy
For the case wherg(F) = T, we simply writeg-reverse over fluent symbols, deciding whether there exists an action
plan for¢; 1)-reverse plan. For instance, a conditional reversesequence? of polynomially bounded length such thatis a
plan for booking a room may be first calling the hotel in which ¢; ¢>-reverse plan foAS.
the roomis reserved, and then cancelling the reservation, with For our discussion of the computational complexities of
the condition that another room is available at another hotel .these problems, recall the following sequence of classes from

Problem‘ IR =1 ‘ |R| =2 ‘ |R| > 2 Checking this condition changes the complexity of (P1) when
(P1) coNP 1 1 |R| = 1from coNP toD¥ (which is the “conjunction” ofNP
(P2) P 5P 5P andcoNP); it dqes not change the complexity of (P3).
3 g f, The complexity of problems can be lower under some con-
(P3) X 23 23 ditions. For example, if the reverse plan is short (i.e., has
Table 1: Complexities of (P1)—(P3), in terms of completenes& length bounded by a constant) and contains no parallel ac-
tions, andp, ¢ are formulas from a polynomial size set of for-
o . mulas, then only a polynomial number of candidatesstap-
the polynomial hierarchy: First;f = IIf = P; and for all reverse plans need to be checked for (P3). If the executability
k>1,%? = NP¥-1 andIl? = coNP-1, Each complex- of actions can be determined in polynomial time then (P1)
ity class at each level (k > 1) of the hierarchy, includes all getscoNP-complete, and (P2) and (P3) gef-complete.

complex!ty classes at lower levels. For fur.th'er background Rractable cases. Also tractability can be gained in certain
complexity, we refer the reader [Bapadimitriou, 199 cases. For example, if and are conjunctions of literals

_ The complexity results for problems (P1)-(P3) are summay, ioh have a single model and the description of transitions
rized in Table 1. According to these results, checking whethe{r (F, A, F') is such that for given fluent values(resp.,S’)

an action s(_equ?gci()a) IS@ -1 evehrse fplz:tjr_ln;‘go;another a(I:tlon and action occurrences all fluent valuess’ (resp.,S) such
sequence (i.e., is easier than finding a-reverse plan , g A

for an action sequence (i.e.. (P2) and (P3)). Finding a- thattr (S, A, S") holds can be determined in polynomial time,

: . 9 then finding a shord; ¢-reverse plan without parallel actions
reyerse plan, vlvhe;@ andb;_b aré g|v§n 'fs hardeithag fm_dmg @ for a short action sequence is feasible in polynomial time.
?h,qp-reverse P aln (')tr ar |t|r|ar%han Y for u?l"hi 2, utgls o' Thus in particular, reversal of the current state in the exe-

€ same compiexity in all other cases. .ese problems g&tsion of an action sequence is possible in polynomial time
more difficult when the length aR increases: Problems (P1) under these conditions
and (P3) get more difficult whel?| > 2, while problem (P2) '
gets more difficult whehR| > 2. :
Intuitively, theXE-completeness of (P2) and (P3) is due to5 Computation of Reverse Plans
the following intermingled sources of complexity: We compute reverse plans in the spirit of knowledge com-
(i) the exponentially many action sequendgef a polyno- pilation [Cadoli and Donini, 1997 first we compute offline
mially-bounded length and, in case of (P2), the exponentiallyeverse plans for some action sequences, and then use this
many formulasp ands«/ which need to be considered, information online to construct a concrete reverse plan for a
(ii) the test that for all stateS and S’ such thaty(S’) and ~ given action sequence. In the offline phase, the computed
¥(S) hold andS’ is reached front after execution ofAS, reverse plans for action sequences are collected in a library.
every execution of? which starts inS’ ends inS, and (i) ~ This library may not contain all possible reverse plans for all
the test that each partial executionf®btarting in some state action sequences (since exponentially many of them exist),
S’ as in (i) can be continued with the next action, i.e., thebut a polynomial number of reverse plans for short action se-
execution is not “stuck.” quences (typically, of a few steps, and the reverse plans are
Membership of problem (P1) iff} is straightforward from short themselves). From these short reverse plans, one might
Definitions 3 and 4. The;i-reverse plan property is easily €fficiently compose online reverse plans for longer action se-
rewritten to a prefix quantified Boolean formula (QBF) with quences. For example, a reverse pl&a, B:) for the action
v3 pattern; evaluating such a formula is well-known to beSequenceA;, A;) can be composed of the two reverse ac-
in IT5. Problem (P3) is thus il%, since ap;y-reverse plan tions By and B, that undo the effects of two action, and
can first be guessed and then checked wiflibzoracle. In A2, respectively. As we show later, such a construction of
problem (P2),4 and+ are w.l.o.g. conjunctions of literals @ reverse plan for an action sequence, from the reverse plan
and can be guessed along with the plan; the extra condition i#rary, can be done efficiently.
checkable with an NP oracle. Hardness is shown by suitable We define a reverse plan items and libraries as follows.

reductions of evaluating QBFs. Definition 5 A reverse plan item (RPI} a tuple of the form
_ When limiting the length of the reverse plan, some quan{AS R, ¢,1) such thatR is a ¢;-reverse plan for the
tifiers vanish. Informally, whenR| = 1, source (iii) disap- (nonempty) action sequenetS, whereg = #(F) andy =
pears, and similarly whefi?| = 2 for (P2). The reasonis (7). An RPI issingle-stepif |[AS| = 1, i.e., AS consists of
that if R = (A;) and if the current staté” and the staté& to 3 single action, andinconditionalif ¢ = ¢ = true.

which we want to get back are known, then in the light of (ii)
; , : : "

aﬁijcuhs E: Siﬁ,tnoomz?_klvﬂﬁéhgéé (1)} %:))|23) ;gllzd Ej\lns;;;c;n, it is called single-steresp.,unconditiona), if each RPI in it

we similarly just need to check after reachifij from S’ by is single-step (resp., unconditional).

executingA; whether(S”, A,, S) is a valid transition. Com- There are various ways to compute RPIs to fill a reverse

bined with other properties, this yields thg upper bound. plan library. Thanks to the logical framework and definitions
In problems (P1) and (P3), we do not check that the for-of reverse actions and plans, it is fairly straightforward to en-

mulas¢ and v are actually satisfied at some statsand code the problem of actually finding an RRLS, R, ¢, ¢) by

S, respectively, such tha’ is reached front be execution solving QBFs, which has been proposed as a problem solving

of AS (if no such states exist, the problem is trivially solved). method in the planning domain earlier, e[Rintanen, 1990

Definition 6 Areverse plan library. is a (finite) set of RPIs;

Algorithm ReVERSHAS,II, L) Algorithm REVERSEL(j)

Input: Action sequencelS = (Ao, ..., A;—1),i >0, Input: Integerj, 0 < j < i (=|AS]);
sequence of formulas (percept$)= 7o (F), ..., Output: Reverse plaRP for (Ao, ..., A;_1)
7;(F), reverse plan library; fromm, ..., m;, or “no” if none exists
Output: Reverse plaRP for AS fromII and L or “no” (1) if j =0 then retum e ; /* empty plan */
(01) foreachj=0,...,i—1do S[j] := L; (02) for each (As, R, ¢,v) € L s.t. As is a suffix
(02) S[i]:=T; [*trivially, S; is reversible to itself */ of (Ag,...,A;_1)andS[j—|A|s| = L do
(03) RP := REVERSEL(:); (03) if 73 O ¢andm;_j4s D ¢ then
(04) if RP="no" thenreturn “no” (04) begin
(05) elsereturn (RP,S[0]) (05) S[j—|As|] =T, [*reversing toS; possible */
(06) RP := REVERSEL(j—|A4s]);
Figure 1: Algorithm REVERSEto compute execution rever- (97) if RP #"no” thenretumn R+ RP
sals using a multi-step plan library. (08) end

(09) return “no”

Another possibility is to reduce the problem to solving con-
formant planning problems defined relative to a modification
of D. Due to space reasons, we cannot give the details, and

instead focus on the more interesting problem of online reyy | since this is false initially. The recursive algorithneR
verse plan computation. VERSEL updatesS whenever new knowledge is gained. For
At runtime, when we do try to assemble a reverse planinstance, if the actiom;_; can be reversed at sta$e, then
we can think of three increasingly expressive scenarios, deye know that a reversal t§;_; exists and modifyS[i — 1]
pending on available state information in formpefrceptsr; accordingly. Having this information available ffhhelps us

Figure 2: Algorithm REVERSEL, in the scope of RVERSE

about some states;, j = 0, 1,.. ., i, of the execution: find a reverse plan for the action sequerc®from L. Also,

1. There is no information about the current statg,and it prevents us explore the same search space over and over.
past statesSy, Sy, ..., Si—1. In this situation, only uncon- The algorithm REVERSEStarts constructing a reverse plan
ditional reversal plans, assembled from unconditional RPIs;q an action sequendely, ..., A;_;) by considering its suf-
might be used. _ _ _ fixes As. For efficiently determining allis in L, we can em-

2. (Partial) information about the current staigis avail- ploy search structures such as a trie (or indexed trie) to repre-

able, expressed by a formuta(7) such thatS; is one of its sentL: consider each node of the trie labelled by an action, so
models, but no information about the past states. In this casgyat the path from the root to the node would describe an ac-

we can also make use of conditional RPIs. o tion sequence in reverse order. If the node describes an action
3. (Partial) information about the whole execution history sequencets such thai(As, R, ¢, 1)) is in L, then the node is

is available, formalized in terms of a sequefite- 7y, ..., linked to a list of all RPIs of form{As, R', ¢/, ') in L.

m; of formulas over fluent symbols, such that the stéifes The next theorem bounds the running time of algorithm

a model ofr;(F), for eachj = 0,1,...,:. Here, we might
exploit an even larger set of RPIs.

Clearly, scenario 3 generalizes the other ones; due to Spa§g,eorem 3 () REVERSHAS,II,L) has running time
limitations, we thus focus here on this general scenario. O(AS|(|L] - evalmax(A)’ +’ min(ASmax (L), |AS]))),

When we consider a multi-step plan library, i.e., not where evalyax (11, L) bounds the time to evaluatg >
necessarily a single-step plan library, finding a reverse plan ¢ andr; O v for any; in I and formulasg, ¥ in L;

REVERSEand states its correctness.

RP is trickier sinceRP may be assembled fro in many and ASyax (L) = max{|As| | (As, R, ¢,) € L}.
different ways, and state conditions might exclude some

of them. For instance, take AS &4, B,C), and L = (i) REVERSHEAS,II, L) correctly outputs, relative td, a
{({(A,B), (D), $1, T), ((C),(E), pa, T), ({A), (F), p3, T), reverse planRP for AS andII or it determines that

((B,C),(G), ¢4, T)}. We can assemble the action sequence such a reverse plan does not exist.

(A, B,C) from (A, B) and (C), or from (A) and (B, C).

However, in the former case;; might be false at the state Corollary 4 REVERSHAS,II, L) is polynomial, if all per-

resulting from reversing’ by E, while, in the latter case); cepts inll are DNFs and all formulas i, are k-term DNFs,

might be true at the state resulting from reversing the actior.e., \/ff:1 t;,; wherek is bounded by a constant, or CNFs.

sequencéB, C) by the action7. Thus, we need to consider

choices and constraints when building a reverse plan. We remark that in an application settingl.S| as well as
Fortunately, this is not a source of intractability, and a re-reverse plank are expected to be small (bounded by a con-

verse plan fromZ can be found in polynomial time (if one stant) and percepts; and the formulag, ¢ consist of a few

exists) by the algorithm RvERSEIn Figure 1. literals. In this case, the running time @(|L|) i.e., linear
The auxiliary arrays' in the algorithms is used for keeping in the size of the reverse plan librafy If, moreover, only

information to which state§; a reversal is established. The few of the entries in the reverse plan library match, then the

main algorithm, RVERSE initializes everyS[j] (j < i) of S running time can be drastically shorter.

6 Related Work References

Our work on undoing the execution of an action sequence hds#\grawalet al, 1991 H. Agrawal, R. A. DeMillo, and E. H.
been partly motivated byHayashiet al, 2002; 2004, where Spafford. An execution backtracking approach to program
the user has to provide the reversal information. Here, we debugging.|EEE Software8(3):21-26, 1991.

describe a method which allows for automatic discovery of[Baralet al, 2004 C. Baral, V. Kreinovich, and R. Trejo.
this knowledge. Moreover, we describe a flexible online as- Computational complexity of planning and approximate
sembly of reverse plans from a reverse plan library. While planning in the presence of incompleteneastificial In-
[Hayashiet al,, 2002; 2004 just consider single actions and telligence 122(1-2):241-267, 2000.

associated reverse actions, this library may contain arbitrarjcadoli and Donini, 1997 M. Cadoli and F. M. Donini. A
conditional action sequences, which the reverse plan algo- syrvey on Knowledge CompilatiorAl Communications
rithm can flexibly use. Our work is further motivated by ap- 10(3-4):137-150, 1997.

proaches to plan recovery in logic-based monitoring frame[De Giacomeet al, 1994 G. De Giacomo, R. Reiter, and
works [De Giacomoet al, 1998; Soutchanski, 1999; 2003; ™, "s;tchanski. Execution monitoring of high-level robot
Fichtneret al, 2003. However, they either do not consider programs. IrProc. KR pp. 453-465, 1998.

action reversals or define it in a different way, usually com-[Eiteret al, 2004 T. Eiter, E. Erdem, and W. Faber. Undo-

bined with goal reachability. ing the effects of action sequences. Tech. Report INFSYS

The idea of backtracking for recovery in execution mon- ; , .
itoring is similar in spirit to “reverse execution” in program RR-1843-04-05, TU Wien, A-1040 Vienna, Austria, 2006.

debuggind Zelkowitz, 1973: Agrawakt al, 1991, where all [Eiteretal, 2004 T. Eiter, W. Faber, N. Leone, G. Pfeifer,
actions are undone to reach a “stable” state. Our method is @nd A. Polleres. Alogic programming approach to knowl-
more general, since no execution history is required a priori. €dge-state planning: Semantics and complexitCL,
Undoing and redoing actions on the database is at the heart of 5(2):206-263, 2004.
recovery in database management systems. However, alsolinichtneret al, 2003 M. Fichtner, A. GroBmann, and
this context, a log of the action history is available, and so the M. Thielscher. Intelligent execution monitoring in dy-
problem is significantly different. namic environmentg-und. Inform, 57(2—4), 2003.

The complexity of planning in different action languages|[Gelfond and Lifschitz, 1998 M. Gelfond and V. Lifschitz.
and the framework considered here has been studied e.g. in Action LanguagesETAI, 2(3-4):193-210, 1998.
[Baral et al, 2000; Liberatore, 1997; Turner, 2002; Rinta- [Gjunchigliaet al, 2004 E. Giunchiglia, J. Lee, V. Lifs-

nen, 1999; Eiteet al, 2004. Conformant planning (decide, chitz, N. McCain, and H. Turner. Nonmonotonic Causal
given an action domain and formulasit(F) and goal(F) Theories.Artificial Intelligence 153(1-2):49—104, 2004.
describing the initial state (not necessarily unique) and agoe['Hayashiet al, 2004 H. Hayashi, K. Cho, and A. Ohsuga.
state, respectively, whether there exists some action sequencep;gpile agents and logic programming. Rroc. MA pp.
AS whose execution in every initial state makas:l true) 32-46. 2002.

is related to finding a reverse plan, and has similar comple . .
: : Hayashiet al, 2004 H. Hayashi, K. Cho, and A. Ohsuga.
ity for plans of polynomial lengthX%;-completeness). How- X[Aynew HTN plaﬁning frgmework for agents in dyna?nic

ever, the problem is different: In action reversal, we lack a o\ ion mente \1Proc. CLIMA pp. 108133, 2004,

(known) goal to establish. Moreover, conformant planning, . . :
is ©2-complete already for plans of length 1, and recogniz-[l-'beratore’ 199F P. Liberatore. The complexity of the lan-

ing conformant plans of this length I$5-complete[Turner, guageA. _Electron. Trans. Artif. '_”t‘?'l_'1313_38' 1997.

2004, differing from the results in Table 1. [Papadimitriou, 1994 C. H. Papadimitriou.Computational
Complexity Addison-Wesley, 1994,

7 Conclusion [Rintanen, 199P J. Rintanen. Constructing Conditional

]) Plans by a Theorem-ProvelAIR, 10:323-352, 1999.
We formally defined undo actions and reverse plans for an aG50n and Baral, 2041T.C. Son and C. Baral. Formalizing

tion sequence, in the logic-based framework for action repre- - ggnging Actions — A Transition Function Based Approach.
sentation fron{Turner, 2002 As we have shown, determin- _ Artificial Intelligence 125(1—2):19-91, 2001.

ing an undo action or reverse plan for an action sequence
intractable in general (more precisely, complete for the clas .
Y% respectivelyXt in the Polynomial Hierarchy). The in- g];hll?goht;l)eiv::::i% rr?%i;ﬂn%%%%gs‘ rroc. LJCAIWorkshop
tractability is explained, on the one hand, by the intractability i o

of propositional logic underlying the framework, and, on the[Soutchanski, 2003M. Soutchanski. High-level robot pro-
other hand, by the intrinsic complexity of non-determinism; ~9ramming and program execution. Fmoc. ICAPS Work-
nonetheless, tractability is gained under suitable restrictions. SNOP on Plan Executior2003.

To cope with intractability, we presented a knowledge compi{ Turner, 2002 H. Turner. Polynomial-length planning spans
lation approach by which undo actions and reverse plans can the polynomial hierarchy. IRroc. JELIA pp. 111-124.

be efficiently constructed (under suitable conditions, in lin-[Zelkowitz, 1973 M. V. Zelkowitz. Reversible execution.
ear time) from a reverse plan library. An implementation of Communications of ACML6(9):566, 1973.

the compilation algorithms, including the generation of con-

ditional reverse plan libraries, is currently in progress.

L%outchanski, 1999M. Soutchanski. Execution monitoring

