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1 Introduction

Planning has played an important role in many relevant areas of AI. The
classical planning problem consists of the following task: Given a state
of the world, several actions and their (deterministic) effects, find a se-
quence of actions (viz. a plan) to reach a certain goal state. In recent
years, several successful logic-based approaches to classical planning have
been proposed (cf. [33, 11, 63, 15]). In particular planning under the an-
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swer set programming (ASP) paradigm1 has received considerable attention
(cf. [46, 44, 59, 24, 22, 23, 18]).

Apart from classical planning, many suggestions have been made on how
to plan under incomplete knowledge or with possible non-deterministic effects
of actions, such as conformant planning [35], conditional planning [50] or
universal planning [58]. All of these approaches concentrate on “statically”
generating plans in advance. However, when planning for an autonomous
agent or a group of collaborative agents in real world environments, more
complex problems arise.

One cannot rely on a set of given initial states for which we can simply
compute a plan and execute it without any interferences from outside the
agents sphere of influence, which is the common assumption of most planners.
In fact, exogenous events can disturb the plan and make it infeasible. Even
worse, the assumed effects of an action can change due to some unforeseen
reasons. For instance, assume a robot which is manually turned around while
moving towards a target: It will, when sticking to its static plan, move away
instead of getting closer to the target.

In this context the importance of the integration of reactive behavior
with planning has been recognized as an emerging issue already more than
a decade ago [32]: This is the point where “monitoring” and “belief revi-
sion” [31] come into play. Here, we still want to make use of plan generation
in the classical sense, but add capabilities to revise or if necessary recompute
these plans according to the current situation. In this context, revision can
be seen twofold in this context by either trying to “repair” the plan at hand
or by adapting the domain model we have used for generation of a failed plan
and replan.

A further issue in collaborative environments can be the combination
(plan merging/fusion, cf. [67]) of individual plans of collaborative agents.
As described in Figure 1, agent planning in general is often described as a
continuous loop of planning, acting and sensing the actual state of the world.

While logic programming methods and, in particular, ASP methods have
proved to be profitably applicable for tasks such as knowledge-base updates
(cf. [73, 39, 3, 2, 25, 26]), and diagnosis (cf. [53, 51, 13, 21]), to our knowl-
edge the application to the special case of replanning and plan revision and

1For a comprehensive introduction to answer set programming we refer to [6] and to

the proceedings of the “AAAI 2001 Spring Symposium on Answer Set Programming” [52]

which was held in Stanford, CA in March 2001
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Figure 1: Sense-Act Loop with Planning

integration/interleaving with plan generation has not yet been examined ex-
tensively in a logic-based framework. This is one of the the main targets of
our project.
Objective of this document. The objective of this document is to survey
the state of the art in logic-based frameworks for execution monitoring by
briefly comparing and positioning the work in this project to other related
work, in order to provide a basis for drawing conclusions about the further
course of the project, in order to clarify possibilities and restrictions.

The remainder of this document is structured as follows. In the next
section, we consider execution monitoring of a single agent, while Section 3,
we consider monitoring of multi-agent systems. Section 4 is devoted to the
issue of domain revision for planning and action frameworks. After that,
we turn in Section 5 to discuss possible directions of research. The final
Section 6 reports on some activities which, in the light of the analysis, have
been started and produced preliminary results already.

2 Monitoring with a Single-Agent

The earliest major treatment of execution monitoring was PLANEX [30]. It
accepts goals from the user, calls the STRIPS planner to generate plans, and
uses “triangle tables” for execution. PLANEX was used to control the robot
Shakey.

The NASL planner [47] treats a planning problem as a specification for
carrying out a complex action, so the planning and execution are completely
unified.

IPEM [4] was the first system integrating partial-order planning with plan
execution.

XFRM [9, 10] provides the continual modification of robot plans dur-
ing their execution, using a rich collection of failure models and plan repair
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strategies. XFRM projects a default plan into its possible executions, diag-
noses failures of these projected plans by classifying them into a taxonomy
of predefined plan failures, and then revises the default plan by following the
pointers from the predefined failures to predefined plan repair strategies.

Some other systems that integrate planning with execution monitoring
are ROGUE [36], SIPE [70], SOAR [55], SPEEDY [8].

The idea of “universal plans” was developed in [58, 56, 57] to “address the
tension between reasoned behaviour and timely response by caching reactions
for classes of possible situations”.

The recovery technique called “purely inserted recovery plans” is proposed
in [48]. When an execution failure is detected, a new plan is inserted to be
able to continue with the rest of the default plan.

In [37], monitoring tasks with deadlines is considered as a sequential
decision problem, which makes available a dynamic programming method
for constructing a decision rule for monitoring. However, the authors do not
consider any recovery technique besides the decision to abandon a monitored
task if it is about to miss a deadline.

The “rationale-based monitoring”, based on the idea of planning as de-
cision making, is introduced in [69]. The idea is to monitor sensing relevant
(or potentially relevant) features of the world that are likely to affect the
plan execution. Moreover, it investigates the balance between sensitivity to
changes in the world and stability of the plans.

In this project, we are interested in logic-based monitoring frameworks.
The existing logic-based frameworks for execution monitoring are presented
in [12, 61, 62], and [28, 29].

In [12, 61, 62], execution monitoring is defined as “the robot’s process
of observing the world for discrepancies between the actual world and its
internal representation of it, and recovering from such perceived discrepan-
cies”. The authors assume that the discrepancies are caused by exogenous
actions and, moreover, the robot observes all such actions. In these frame-
works, the agent detects a discrepancy if the current situation (“physical
reality”) is different from the expected situation (“mental reality”). If the
discrepancy is “relevant”, i.e., if the remaining plan (or, in general, program)
is not successful, the agent tries to recover from it. For recovery, in [12], a
new plan is computed so that executing it followed by the remaining plan
would lead to a goal situation from the current situation. In [61], the authors
consider “restartable plans” so that the agent can backtrack to a past nonde-
terministic choice point without having to compute a plan. After identifying
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the latest nondeterministic choice point, the agent executes the plan from
that point on, to reach a goal situation from the current situation. If the
agent cannot reach a goal situation then she identifies the next past non-
deterministic choice point, and follows the recovery procedure as above. In
[62], backtracking is considered in connection with inserting corrective plans
as in [12], by a recursive recovery procedure like the one in [61]. The agent
computes a plan from the current situation to reach the latest nondetermin-
istic choice point. If executing the plan from that point on does not lead to
a goal situation then the agent tries to recover by inserting a corrective plan
at that point. If the agent cannot find a corrective plan then she finds the
next past nondeterministic choice point, and follows the recovery procedure
as above. In the framework of [62], the author considers sensing actions to
find the real effects of actions.

In [28, 29], the notion of execution monitoring above is extended by that
“the robot should come up with explanations for detected discrepancies”.
Here, the monitoring agent detects a discrepancy when the action is not
executable or when the effects of an action are not as expected. Therefore,
like in action monitoring, the detected discrepancies may not be relevant
to the successful execution of the rest of the plan. Like in [62], the authors
consider sensing actions to find the real effects of actions. After a discrepancy
is detected, the monitoring agent provides an explanation for it. This is
achieved by introducing abnormality predicates to describe the unintended or
unexpected effects of actions. If an explanation is found then some predefined
plans are executed to achieve the goals; otherwise, a new plan is computed
to reach a goal situation from the current situation.

As for representation, in [12, 61, 62], execution monitoring is described
in the situation calculus as in [54], which makes these approaches applicable
to Golog programs [45]. In [29], execution monitoring is described in the
fluent calculus [65] for FLUX programs [66]. These representations allow the
authors of [12, 61, 62, 29] to show the usefulness of their approaches on real
robots.

3 Monitoring with Multi-Agents

Teamwork monitoring has been recognized as a crucial problem in multi-
agent coordination. Jennings [41] has proposed two foundations of multi-
agent coordination: “commitments” and “conventions”. Agents make com-
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mitments. Conventions are a means of monitoring of the commitments. The
monitoring rules, i.e. what kind of information monitored and the way to
perform monitoring, are decided by conventions. Jennings illustrates the
method by some examples. However, he doesn’t investigate how to select
such conventions.

Myers [49] has introduced a continuous planning and execution frame-
work (CPEF). The system’s central component is a plan manager, directing
the processes of plan-generation, -execution, -monitoring, and -repair. Mon-
itoring of the environment is carried out at all time during plan generation
and execution. Furthermore, execution is tracked by the plan manager by
comparing reports of individual actions’ outcomes with the temporal order-
ing relationships of actions. Several types of event-response rule have been
concerned: (1) failure monitors encode suitable responses to potential fail-
ures during plan execution, (2) knowledge monitors detect the availability of
information required for decision making, and (3)assumption monitors check
whether assumptions that a given plan relies on still hold. The idea of as-
sumption monitors helps early detection of potential problems before any
failure occurs.

Based upon CPEF, Wilkins et al. have presented a system in [71]. The
execution monitoring of agent teams is performed based on communicating
state information among team members that could be any combination of
humans and/or machines. Humans make the final decision, therefore, even
if unreliable communications exist, the monitoring performance may not be
degraded much with the help of humans experience.

Another interesting monitoring approach in multi-agent coordination is
based on plan-recognition, by Huber [38], Tambe [64], Intille and Bobick [40],
Devaney and Ram [14], Kaminka et al. [42, 43]. In this approach, an agent’s
intentions (goals and plans), beliefs or future actions are inferred through
observations of another agent’s ongoing behavior.

Devaney and Ram [14] have described the plan recognition problem in a
complex multi-agent domain involving hundreds of agents acting over large
space and time scales. They use pattern matching to recognize team tactics
in military operations. The team-plan library stores several strategic pat-
terns which the system needs to recognize during the military operation. In
order to make computation efficient, they utilize representations of agent-pair
relationships for team behaviors recognition.

Intille and Bobick [40] have constructed a probabilistic framework that
can represent and recognize complex actions based on visual evidence. Com-
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plex multi-agent action is inferred using a multi-agent belief network. The
network integrates the likelihood values generated by several visual goal net-
works at each time and returns a likelihood that a given action has been
observed. The network explicitly represents the logical and temporal rela-
tionships between agents, and its structure is similar to a naive Bayesian
classifier network structure, reflecting the temporal structure of a particular
complex action. Their approach relies on all coordination constraints among
the agents. Once an agent fails, it may not be able to recognize the plans.

Another line of work has been pursued in ISI. Gal Kaminka et al. [42, 43]
have developed the OVERSEER monitoring system, which builds upon work
on multi-agent plan-recognition by [40] and [64]. They address the problem
of many geographically distributed team members collaborating in a dynamic
environment. The system employs plan recognition to infer the current state
of agents based on the observed messages exchanged between them. The ba-
sic component is a probabilistic plan-recognition algorithm which underlies
the monitoring of a single agent and runs separately for each agent. This
algorithm is built under a Markovian assumption and allows linear-time in-
ference. To monitor multiple agents, they utilize social knowledge, i.e. rela-
tionships and interactions among agents, to better predict the behavior of
team members and detect coordination failures. OVERSEER supports rea-
soning about uncertainty and time, and allows to answer queries related to
the likelihood of current and future team plans.

4 Domain Revision

In the case of flaws or inconsistencies, one may need to modify the domain
description as well. A related work of domain revision in the context of
logic-based execution monitoring is presented in [28, 29].

In [28, 29], the authors try to distinguish between the recent and the
outdated information using “knowledge update axioms” (KUAs). Incomplete
knowledge of the world is represented by possible states. When a robot gains
more information using its sensors, the set of possible states can be reduced
to a smaller set satisfying this new information. KUAs update the set of
possible states as follows. The fluents that are treated as dynamic are tagged
with the time of their observations. For instance, for a fluent f(~x) and a time
t, if f(~x, t) is true in all possible states (of a situation) then this means that
f(~x) has been observed to be true at time t. Such a time point is unique
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for each fluent at each situation. When a robot senses information about
a dynamic fluent f at time t, it discards the previous knowledge on f and
updates the set of possible states by recording f to be true (false, resp.) at
all possible states depending on whether f holds (does not hold, resp.) in
situation s. This allows the robot to forget some information depending on
the value of t. Also, with many observations over time, the robot can gain
sufficient confidence about a certain property and modify her belief about
that property.

5 Directions for Research

5.1 Monitoring with a single-agent

We want to find a general logic-based framework for monitoring. We consider
monitoring as a three step process, like in [28, 29]:

• detection of discrepancies,

• finding diagnoses of these discrepancies, and

• recovering from the detected discrepancies using these diagnoses.

Like [12, 61, 62], we want to give a formal specification of each step.
In [12, 61, 62], all possible trajectories of the monitored plan are taken into

account for discrepancy detection; in [28, 29] no trajectories are considered.
We consider monitoring relative to a given set of intended trajectories, which
is more general than the above.

In [28, 29], the authors introduce abnormality predicates to find expla-
nations for detected discrepancies. This approach is similar to the kind of
diagnosis discussed in [7] and [5] where the authors detect faulty components
of a system using abnormality predicates. We want to find diagnoses for
discrepancies without introducing such predicates where we do not have to
formulate all possible abnormal cases of the execution for each action.

Plan recovery by backtracking is not studied in [12, 28, 29], and it is
studied to some extent in [61] (i.e., for restartable programs) and in [62]
(i.e., backtracking as planning) using “traces” of the plan. We want to find a
backtracking method for plan recovery that requires less amount of planning,
and that does not require an execution history. In particular, our idea is to
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consider “reversing” actions for backtracking, as an (in general) incomplete
but efficient method.

The idea of backtracking for recovery that we consider is similar to “re-
verse execution” in program debugging [72, 1], where every action is undone
to reach a “stable” state. However, reverse execution in program debugging
requires an execution history.

According to the framework we study, in the process of monitoring the
execution of a plan relative to a set of intended trajectories, the monitoring
agent

1. checks whether there is a discrepancy between the current state and
the corresponding states of the given trajectories relative to the plan;

2. if no discrepancy is detected then continues with the execution of the
plan; otherwise, tries to find a diagnosis of discrepancies by examining
the given trajectories against possible evolutions of the current state
from the initial state;

3. if a diagnosis is found then recovers from the discrepancies by back-
tracking to the diagnosed point of failure and executing the plan from
that point on; otherwise, finds another plan from the current state to
reach a goal state.

As for representation, in order to abstract from the details of a logic-
based action representation framework like K or C, we plan to consider the
action representation framework of [68] to describe execution monitoring. In
this representation framework, an action description can be represented by a
transition diagram—a directed graph whose nodes correspond to states and
whose edges correspond to action occurrences. It can accommodate nondeter-
minism, concurrent actions and dynamic worlds. Such action representations
can be obtained from domain descriptions in STRIPS-based languages or in
more expressive action description languages, such as C+ [34] or K [22]. This
allows one to employ systems like ccalc and dlv

K, eventually.
We have started describing the monitoring framework above in [19] and

[20]. One possible research direction is extending the monitoring frame-
work with sensing actions for conditional planning, and with probabilistic
information for quantitative uncertainty. This requires the extension of the
underlying action description languages like K (see also section 5.3).

Another research direction is the update of the domain description in
the case of flaws or inconsistencies. This may require the revision of the
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plan as well. For that, we need to consider a more general process than the
third step of our framework above, which involves both patch planning and
backtracking in general.

5.2 Monitoring with multi-agents

One interesting problem is, given a (possibly incomplete) description of a
multi-agent system (MAS), to check whether the actual agent collaboration
is compliant with the description. We have studied this problem in [16,
17]. Here, agent collaboration can be described as an action theory. Action
sequences reaching the collaboration goal can be computed by a planner,
whose compliance with the actual MAS behavior allows to detect possible
collaboration failures. The approach can be fruitfully applied to aid

(1) debugging offline an implemented MAS, and

(2) monitoring online the collaboration of multiple agents.

The plan-recognition approaches described above mainly aim at inferring
(sub-)team plans and future actions of agents. They do not address the MAS
debugging issue. Furthermore, our approach above might be used in the
MAS design phase to support protocol generation, i.e., determine at design
time the messages needed and their order, for a (simple) agent collaboration.
The agent developer may select one of the possible plans, e.g. according to
optimality criteria such as least cost, P ∗, and program the individual agents
to obey the corresponding protocol. In subsequent monitoring and testing,
P ∗ is then the (single) intended plan.

Plan recognition is suitable for various situations: if communication is not
possible, agents exchanging messages are not reliable, or communications
must be secure. It significantly differs from our approach in the following
points:

1. If a multi-agent system has already been deployed, or it consists of
legacy code, the plan-recognition approach can do monitoring without
modifications on the deployed system. Our method entirely relies on
an agent message log file.

2. The algorithms developed in [43] and [14] have low computational com-
plexity. Especially the former is a linear-time plan recognition algo-
rithm.
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3. Our model is not yet capable of reasoning about uncertainty, time and
space.

4. In some tasks, agents do not frequently communicate with others during
task execution. In addition, communication is not always reliable and
messages may be incorrect or get lost.

We believe the first three points can be taken into account in our frame-
work:

(1) Adding an agent actions log file explicitly for a given MAS should
not be too difficult.

(2) While the developed algorithms are of linear complexity, the whole
framework needs to deal with uncertainty or probabilistic reasoning
which can be very expensive. While our approach is NP-hard in the
worst case, we did not encounter any difficulties in the scenarios we
have dealt with.

(3) Although IMPACT (the agent system used in our framework) does
not yet have implemented capabilities for dealing with probabilistic,
temporal and spatial reasoning, such extensions have been developed
and are currently being implemented.

5.3 Language Extensions

As for language extensions, we see that there are in principle two kinds:

• The first kind of extension is concerned with enriching the basic lan-
guage, by constructs which on the one hand enlarge the scope of prob-
lems which can be expressed in dependent of monitoring and, on the
other hand, might be profitably used for the monitoring process.

• The second kind of extension is tailored for the monitoring process, and
contains constructs which only serve this purpose.

As for the first kind of extensions, the current language of the DLVK
planning system, language K, does not have sensing primitives to read values
from the environment. The capability of processing sensory input would be
very valuable, and thus an extension of the language K in this direction seems
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meaningful. In particular, if the behavior of a monitoring agent should be
formulated itself as a (simple) action theory, then sensing actions would be
mandatory for such a formalization.

Along with sensing, more flexible notions of plans than optimistic or
conformant plans such as conditional plans would be an interesting extension
of the basic language itself. However, the search space for conditional plans
is huge, and only conditional plans of restricted form might be generated
automatically. To our knowledge, in the area of logic-programming based
planning this problem has been addressed only very recently [60].

Another direction is an extension of the language by taking besides qual-
itative uncertainty also quantitative uncertainty into account. In particular,
probabilistic extensions of the language K would be interesting to have. How-
ever, the integration of qualitative and quantitative uncertainty in a single
framework is not an easy task, and its computation might be complex. We
can take profit of the preliminary work [27] on a probabilistic extension of
the language C+, which however needs to be adapted and refined.

For the second kind of extensions, language constructs might be developed
which support a declarative specification of monitoring policies. An impor-
tant notion in this context are checkpoints, i.e., points in time at which the
real execution of a plan should be checked against the intended one. To this
end, checkpoints have to be singled out in a way. A possible extension of the
planning formalism could provide constructs for declaring checkpoints. This
could be, e.g., on the basis of temporal information such as predefined points
in time (e.g., also periodic time points), or in terms of conditions which need
to be met.

Suitable constructs for expressing such checkpoint information could pro-
vide an element for a domain-specific declarative action language for moni-
toring, which builds on K. To our knowledge, no similar language exists for
logic-programming based planning systems.

6 Conclusion

The main target of this project is to integrate monitoring with planning in a
general logic-based framework, and to extend the framework possibly using
relevant methods from the areas of diagnosis and belief revision.

We have introduced a novel monitoring framework in [19, 20] for single
agents. Different from the other logic-based frameworks described in Sec-
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tion 2, this framework should provide explanations, during the execution of
a plan, for what goes wrong and when; it should not be necessary to identify
a priori what may go wrong by introducing abnormality predicates for each
action. To identify a possible point of failure, the monitoring agent should
not have to consider all feasible trajectories for the plan, but only a given set
of trajectories describing some “intended” or “preferred” executions of the
plan. Then our framework can suggest a recovery by backtracking to a point
of failure, which sometimes prevents replanning.

One interesting problem is, given a (possibly incomplete) description of a
multi-agent system (MAS), to check whether the actual agent collaboration is
compliant with the description. We have studied this problem in [16, 17]. The
plan-recognition approaches described in Section 3 mainly aim at inferring
(sub-)team plans and future actions of agents. They do not address the MAS
debugging issue.

Extension of the monitoring framework for a single agent and extension
of the action description language K accordingly remains as a future work,
as discussed Section 5.1.
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