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Abstract. Answer-set programming (ASP) is a well-known formalism for declarative
problem solving, enjoying a continuously increasing number of diverse applications. How-
ever, arguably one of the main challenges for a wider acceptance of ASP is the need of
tools, methods, and methodologies that support the actual programming process. In this
paper, we review the main goals of a project, funded by the Austrian Science Fund (FWF),
which aims to address this aspect in a systematic manner. The project is planned for a
duration of three years and started in September 2009. Generally, the focus of research will
be on methodologies for systematic program development, program testing, and debugging.
In particular, in working on these areas, special emphasis shall be given to the ability of
the developed techniques to respect the declarative nature of ASP. To support a sufficient
level of usability, solutions are planned to be compatible not only for the core language
of ASP but also for important extensions thereof that are commonly used and realised in
various answer-set solvers. Ultimately, the methods resulting from the project shall form
the basis of an integrated development environment (IDE) for ASP that is envisaged to
combine straightforward as well as advanced techniques, realising a convenient tool for
developing answer-set programs.

1. Introduction

Answer-set programming (ASP), in its most important incarnation as logic programming
under the answer-set semantics [Gel88, Gel91a], is a well-known paradigm for declarative
problem solving whose underlying idea is that problems are solved by encoding them in
terms of programs such that the solutions of a given problem are determined by the models
of the associated program. Hence, the models of the latter provide the “answers” of the
input problems—this stands in contrast to traditional logic-based knowledge representa-
tion where proofs constitute an answer to a problem. The development of sophisticated
answer-set solvers (see, e.g., Denecker et al. [Den09] for a recent overview), led to success-
ful applications in diverse fields like planning [Gel02], diagnosis [Eit99, Gel01], symbolic
model checking [Hel03], bioinformatics [Pal09, Erd09b, Erd09a], e-tourism [Iel09], patient
monitoring [Mil09], music composition [Boe08, Boe09], and many others.
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Although ASP is regarded as a programming paradigm, it currently offers only limited
support for developing programs, compared to other programming languages for which a
large number of tools and development methodologies exists. Indeed, ASP research so far
concentrated, by and large, on (i) formal properties of the answer-set semantics, (ii) issues
related to using it for knowledge representation and reasoning, and (iii) the development
of ASP solvers. These endeavours led to the acceptance of ASP as a viable approach for
declarative knowledge representation, but in order to achieve a wider acceptance of ASP
among practising software and knowledge engineers, tools and methods for supporting the
programmer in developing programs are needed. Although already more than a decade
ago, De Schreye and Denecker [DS99] identified this need as being vital towards practica-
bility of computational logic formalisms in general, only recently increased efforts in this
direction have started in the ASP community—particularly on debugging and modularity
aspects [Bra05, Pon09, Syr06, Bra07, Mik07, Geb08]. The awareness of these engineering-
oriented requirements is also reflected by the launch of the SEA workshop series on Software
Engineering for Answer-Set Programming in 2007.1

In this paper, we review the main goals of the project “Methods and Methodologies
for Developing Answer-Set Programs” which we started in September 2009. It aims to
address the above mentioned engineering requirements for ASP in a systematic manner and
is hosted by the Knowledge-Based Systems Group of the Institute of Information Systems
at the Vienna University of Technology. Funding is provided by the Austrian Science Fund
(FWF) and the planned duration of the project is three years. It comprises two researcher
positions and is lead by Hans Tompits.

Generally, the focus of research of the project will be on methodologies for systematic
program development, program testing, and debugging. We want to study abstract concepts
that underlie the tasks emerging when programming in ASP as well as to develop concrete
tools realising the researched techniques. In particular, special emphasis shall be given to
the ability of the developed techniques to respect the declarative nature of ASP. Further-
more, the theoretical line of research will also involve aspects of decidability and complexity,
and, concerning the development of tools, we plan to incorporate proof-of-concept imple-
mentations of the theoretical formalisms and approaches that will emerge from our research
into an integrated development environment (IDE). The evolution of this system shall be
subject to continuous evaluation in the context of laboratory courses on logic programming
(such courses are held each semester at our institute).

We also plan research cooperations with different ASP groups, in particular with those
at the University of Potsdam (Germany), Aalto University (Finland; incorporating the
former Helsinki University of Technology), the University of Bath (U.K.), and the University
of Calabria (Italy).

The next section provides a more detailed discussion of our research agenda.

2. Project objectives

2.1. Systematic program development

We want to investigate methods which support the systematic development of programs.
In standard programming languages, incremental and iterative program development are

1See sea07.cs.bath.ac.uk and sea09.cs.bath.ac.uk.
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well-known techniques. In the first method, a program is divided into subparts by function-
ality and developed one by one, whilst in the second method, a complex program is devel-
oped by iteratively refining the functionalities of less complex versions of it. We plan to study
incremental and iterative development methods in the context of ASP. Here, the notion of a
conservative extension [Gel91b, Gel96], which was introduced as a theoretical basis for the
enhancement of a logic program by adding further rules, can be abstracted by considering
program extensions in terms of operators prescribing how a program can be enhanced along
with a binary correspondence relation between a program and its enhancement. The role of
such a correspondence relation is to reflect the property to be preserved when enhancing the
original program. The issue of program correspondence has been the subject of extensive
research in the recent past [Lif01, Ino04, Eit05, Oik06, Oet07, Eit07, Fin08, Oet08, Tru09]
and a project, also funded by the FWF, was conducted at our research group on this topic
and successfully finished in 2008.2

A crucial aspect for the issue of incremental program development, where larger pro-
grams are composed from smaller program parts, is the question of program modularity
(cf., e.g., the work of Brogi et al. [Bro94] about logic programs without negation). We
want to analyse how different notions of a program module can be used to compose com-
plex programs or how such notions can be extended or refined. An interesting concept
in this regard is the notion of a DLP-function [Jan09], having its roots in early work on
lp-functions [Gel96], which, roughly speaking, is a logic program together with an interface
specifying the input, output, and local atoms of that program. DLP-functions are assigned
with an extension of the answer-set semantics admitting a compositional semantics, i.e., the
semantics of a modularised program is given as the union (suitably defined) of the semantics
of its modules. For the software support methods that will be developed in this project, we
will investigate how they can be refined to module-based versions.

We also want to develop techniques that support developers during the intermediate
coding process. In particular, we are interested in methods that provide the user with
suggestions on how to proceed when writing a program, which are computed from the
current state of the program and the desired behaviour that is captured by the specification
of a program. A potential instance of a tool providing suggestions is an intelligent code-
completion technique that offers a selection of potential endings for a rule that is currently
edited. From a methodological point of view, suggestion techniques seem especially valuable
in combination with a test-driven development approach [Bec02]. We want to analyse the
suitability of development approaches where test cases are formulated in advance and then
used to directly support the coding process.

2.2. Testing methodologies

Though crucial for the quality of conventional software, there is little work on testing
methodologies for logic programs. We want to address this issue by analysing how prominent
methods from software testing [Mye79, Het91], like black-box testing or white-box testing,
can be adapted to ASP. We recall that the idea of black-box testing is to derive test cases
from the specification of a component but to abstract from the internal structure of the
component—indeed, as the name suggests, it is only used as a “black box”. Important
in this context is how test cases can be derived from specifications and how to rate the
quality of a suite of test cases with respect to their ability to detect unimplemented or

2See http://www.kr.tuwien.ac.at/research/projects/eq/ for details about this project.
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faultily implemented parts of a specification. Complementary to black-box testing, white-
box testing is based on the structure of a component: For conventional languages, white-box
testing aims at deriving test cases that cover possible paths through a software component.
As one of the first results within our project, we developed, jointly with Ilkka Niemelä
and Tomi Janhunen from Aalto University, different coverage metrics for ASP, along with
their mutual relationships, and laid down basic techniques for test automation using ASP
itself [Nie10].

2.3. Debugging

Complementing the development and testing aspects, we want to study methods to
debug answer-set programs, i.e., techniques supporting the programmer in localising and
fixing program errors. Initial research in this direction is already available [Bra05, Pon09,
Syr06, Bra07, Geb08] but further investigation is needed.3 Especially, as we want to de-
velop debugging techniques for ASP that are applicable in real-world scenarios, debugging
methodologies for non-ground programs are needed—most debugging methods studied so
far concentrate on propositional programs only, however. To address this issue, we extended
the meta-programming technique of Gebser et al. [Geb08] to the non-ground case [Oet10].
Moreover, we intend to consider not only the core language of answer-set programs but also
cover important language extensions like weak constraints, aggregates, or choice rules.

Analogous to techniques for providing suggestions during the immediate coding process,
we want to investigate similar features for program debugging as well. Advice on how to
fix a program can be of different nature, e.g., proposals to remove specific constraints that
eliminate desired answer sets.

Another important issue we want to address is local debugging in connection with
modular-programming concepts. We want to clarify how the search for errors can be re-
stricted to suspicious program components and how program parts can be individually
debugged, yielding correctness of the overall program.

2.4. Specifications for answer-set programs

Most of the methods we are aiming at require information about the intended behaviour
of a program under consideration. For instance, for localising a bug in an erroneous pro-
gram, a debugging system needs to be aware of what the correct semantics of the program
is, in order to classify wrong behaviour. Thus, respective methods for specifying program
properties are needed. This point is important despite the widely held view that, because
of the declarative nature of ASP, logic programs can be seen as specifications themselves,
which, in turn, would eliminate the ubiquitous gap between specification and programming,
as argued by Baral [Bar03]. However, since the process of developing answer-set programs
is not as straightforward as the latter point of view might suggest, it may prove helpful
to describe the desired behaviour of a program in a way that is easier to achieve than the
program itself. This may be done, e.g., in the form of sample test cases, or formally defined
program properties, that only describe certain aspects of the intended semantics, vis-a-vis a
full specification as represented by a complete program. In any case, there is certainly some

3It is also worthwhile to mention here the work of Wittocx et al. [Wit09] on debugging ID-logic theories,
i.e., first-order theories with inductive definitions.



METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 5

subtlety in using declarative descriptions for a declarative language which requests paying
close attention to the practicability of studied specification formalisms.

2.5. Implementation

Complementing our theoretical investigations, we also plan to develop prototype imple-
mentations of our techniques. Towards providing effective support for developers, we want
to incorporate these into an integrated development environment (IDE). A few systems for
developing answer-set programs have been introduced so far [Per07, Sur07], but, despite
providing useful utilities, they are still in an early state of development and leave much
room for improvement. Besides the envisaged functionalities for specification, testing, and
debugging, our IDE should also allow customary functions like providing a code editor,
syntax checking, and syntax highlighting, which are rather trivial from a theoretical point
of view but handy in use. Moreover, we want to guarantee interoperability with most of
the available popular solvers. The IDE will be subject to continuous evaluation within the
laboratory courses on logic programming we teach regularly at our university, and it will
be made publicly available for, e.g., other universities and their teaching needs.

3. Conclusion

Providing intelligent development methodologies and tools constitutes a natural next
step in the evolution of ASP and will hopefully have a positive impact on this field as a whole.
Furthermore, with such techniques at hand, both expert as well as novice programmers will
have an enhanced access to powerful declarative problem-solving machineries.

For further information about the project, see
http://www.kr.tuwien.ac.at/research/projects/mmdasp/.
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