
Submitted to the Technical Communications of the International Conference on Logic Programming (ICLP’10)
http://www.floc-conference.org/ICLP-home.html

METHODS AND METHODOLOGIES FOR DEVELOPING
ANSWER-SET PROGRAMS—PROJECT DESCRIPTION

JOHANNES OETSCH, JÖRG PÜHRER, AND HANS TOMPITS

Technische Universität Wien,
Institut für Informationssysteme 184/3,
Favoritenstraße 9–11, A–1040 Vienna, Austria
E-mail address: {oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract. Answer-set programming (ASP) is a well-known formalism for declarative
problem solving, enjoying a continuously increasing number of diverse applications. How-
ever, arguably one of the main challenges for a wider acceptance of ASP is the need of
tools, methods, and methodologies that support the actual programming process. In this
paper, we review the main goals of a project, funded by the Austrian Science Fund (FWF),
which aims to address this aspect in a systematic manner. The project is planned for a
duration of three years and started in September 2009. Generally, the focus of research will
be on methodologies for systematic program development, program testing, and debugging.
In particular, in working on these areas, special emphasis shall be given to the ability of
the developed techniques to respect the declarative nature of ASP. To support a sufficient
level of usability, solutions are planned to be compatible not only for the core language
of ASP but also for important extensions thereof that are commonly used and realised in
various answer-set solvers. Ultimately, the methods resulting from the project shall form
the basis of an integrated development environment (IDE) for ASP that is envisaged to
combine straightforward as well as advanced techniques, realising a convenient tool for
developing answer-set programs.

1. Introduction

Answer-set programming (ASP), in its most important incarnation as logic programming
under the answer-set semantics [Gel88, Gel91a], is a well-known paradigm for declarative
problem solving whose underlying idea is that problems are solved by encoding them in
terms of programs such that the solutions of a given problem are determined by the models
of the associated program. Hence, the models of the latter provide the “answers” of the
input problems—this stands in contrast to traditional logic-based knowledge representa-
tion where proofs constitute an answer to a problem. The development of sophisticated
answer-set solvers (see, e.g., Denecker et al. [Den09] for a recent overview), led to success-
ful applications in diverse fields like planning [Gel02], diagnosis [Eit99, Gel01], symbolic
model checking [Hel03], bioinformatics [Pal09, Erd09b, Erd09a], e-tourism [Iel09], patient
monitoring [Mil09], music composition [Boe08, Boe09], and many others.

Key words and phrases: answer-set programming, program development, testing, debugging.
This work was partially supported by the Austrian Science Fund (FWF) under grant P21698.

c© J. Oetsch, J. Pührer, and H. Tompits
Confidential — submitted to ICLP



2 J. OETSCH, J. PÜHRER, AND H. TOMPITS

Although ASP is regarded as a programming paradigm, it currently offers only limited
support for developing programs, compared to other programming languages for which a
large number of tools and development methodologies exists. Indeed, ASP research so far
concentrated, by and large, on (i) formal properties of the answer-set semantics, (ii) issues
related to using it for knowledge representation and reasoning, and (iii) the development
of ASP solvers. These endeavours led to the acceptance of ASP as a viable approach for
declarative knowledge representation, but in order to achieve a wider acceptance of ASP
among practising software and knowledge engineers, tools and methods for supporting the
programmer in developing programs are needed. Although already more than a decade
ago, De Schreye and Denecker [DS99] identified this need as being vital towards practica-
bility of computational logic formalisms in general, only recently increased efforts in this
direction have started in the ASP community—particularly on debugging and modularity
aspects [Bra05, Pon09, Syr06, Bra07, Mik07, Geb08]. The awareness of these engineering-
oriented requirements is also reflected by the launch of the SEA workshop series on Software
Engineering for Answer-Set Programming in 2007.1

In this paper, we review the main goals of the project “Methods and Methodologies
for Developing Answer-Set Programs” which we started in September 2009. It aims to
address the above mentioned engineering requirements for ASP in a systematic manner and
is hosted by the Knowledge-Based Systems Group of the Institute of Information Systems
at the Vienna University of Technology. Funding is provided by the Austrian Science Fund
(FWF) and the planned duration of the project is three years. It comprises two researcher
positions and is lead by Hans Tompits.

Generally, the focus of research of the project will be on methodologies for systematic
program development, program testing, and debugging. We want to study abstract concepts
that underlie the tasks emerging when programming in ASP as well as to develop concrete
tools realising the researched techniques. In particular, special emphasis shall be given to
the ability of the developed techniques to respect the declarative nature of ASP. Further-
more, the theoretical line of research will also involve aspects of decidability and complexity,
and, concerning the development of tools, we plan to incorporate proof-of-concept imple-
mentations of the theoretical formalisms and approaches that will emerge from our research
into an integrated development environment (IDE). The evolution of this system shall be
subject to continuous evaluation in the context of laboratory courses on logic programming
(such courses are held each semester at our institute).

We also plan research cooperations with different ASP groups, in particular with those
at the University of Potsdam (Germany), Aalto University (Finland; incorporating the
former Helsinki University of Technology), the University of Bath (U.K.), and the University
of Calabria (Italy).

The next section provides a more detailed discussion of our research agenda.

2. Project objectives

2.1. Systematic program development

We want to investigate methods which support the systematic development of programs.
In standard programming languages, incremental and iterative program development are

1See sea07.cs.bath.ac.uk and sea09.cs.bath.ac.uk.



METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 3

well-known techniques. In the first method, a program is divided into subparts by function-
ality and developed one by one, whilst in the second method, a complex program is devel-
oped by iteratively refining the functionalities of less complex versions of it. We plan to study
incremental and iterative development methods in the context of ASP. Here, the notion of a
conservative extension [Gel91b, Gel96], which was introduced as a theoretical basis for the
enhancement of a logic program by adding further rules, can be abstracted by considering
program extensions in terms of operators prescribing how a program can be enhanced along
with a binary correspondence relation between a program and its enhancement. The role of
such a correspondence relation is to reflect the property to be preserved when enhancing the
original program. The issue of program correspondence has been the subject of extensive
research in the recent past [Lif01, Ino04, Eit05, Oik06, Oet07, Eit07, Fin08, Oet08, Tru09]
and a project, also funded by the FWF, was conducted at our research group on this topic
and successfully finished in 2008.2

A crucial aspect for the issue of incremental program development, where larger pro-
grams are composed from smaller program parts, is the question of program modularity
(cf., e.g., the work of Brogi et al. [Bro94] about logic programs without negation). We
want to analyse how different notions of a program module can be used to compose com-
plex programs or how such notions can be extended or refined. An interesting concept
in this regard is the notion of a DLP-function [Jan09], having its roots in early work on
lp-functions [Gel96], which, roughly speaking, is a logic program together with an interface
specifying the input, output, and local atoms of that program. DLP-functions are assigned
with an extension of the answer-set semantics admitting a compositional semantics, i.e., the
semantics of a modularised program is given as the union (suitably defined) of the semantics
of its modules. For the software support methods that will be developed in this project, we
will investigate how they can be refined to module-based versions.

We also want to develop techniques that support developers during the intermediate
coding process. In particular, we are interested in methods that provide the user with
suggestions on how to proceed when writing a program, which are computed from the
current state of the program and the desired behaviour that is captured by the specification
of a program. A potential instance of a tool providing suggestions is an intelligent code-
completion technique that offers a selection of potential endings for a rule that is currently
edited. From a methodological point of view, suggestion techniques seem especially valuable
in combination with a test-driven development approach [Bec02]. We want to analyse the
suitability of development approaches where test cases are formulated in advance and then
used to directly support the coding process.

2.2. Testing methodologies

Though crucial for the quality of conventional software, there is little work on testing
methodologies for logic programs. We want to address this issue by analysing how prominent
methods from software testing [Mye79, Het91], like black-box testing or white-box testing,
can be adapted to ASP. We recall that the idea of black-box testing is to derive test cases
from the specification of a component but to abstract from the internal structure of the
component—indeed, as the name suggests, it is only used as a “black box”. Important
in this context is how test cases can be derived from specifications and how to rate the
quality of a suite of test cases with respect to their ability to detect unimplemented or

2See http://www.kr.tuwien.ac.at/research/projects/eq/ for details about this project.



4 J. OETSCH, J. PÜHRER, AND H. TOMPITS

faultily implemented parts of a specification. Complementary to black-box testing, white-
box testing is based on the structure of a component: For conventional languages, white-box
testing aims at deriving test cases that cover possible paths through a software component.
As one of the first results within our project, we developed, jointly with Ilkka Niemelä
and Tomi Janhunen from Aalto University, different coverage metrics for ASP, along with
their mutual relationships, and laid down basic techniques for test automation using ASP
itself [Nie10].

2.3. Debugging

Complementing the development and testing aspects, we want to study methods to
debug answer-set programs, i.e., techniques supporting the programmer in localising and
fixing program errors. Initial research in this direction is already available [Bra05, Pon09,
Syr06, Bra07, Geb08] but further investigation is needed.3 Especially, as we want to de-
velop debugging techniques for ASP that are applicable in real-world scenarios, debugging
methodologies for non-ground programs are needed—most debugging methods studied so
far concentrate on propositional programs only, however. To address this issue, we extended
the meta-programming technique of Gebser et al. [Geb08] to the non-ground case [Oet10].
Moreover, we intend to consider not only the core language of answer-set programs but also
cover important language extensions like weak constraints, aggregates, or choice rules.

Analogous to techniques for providing suggestions during the immediate coding process,
we want to investigate similar features for program debugging as well. Advice on how to
fix a program can be of different nature, e.g., proposals to remove specific constraints that
eliminate desired answer sets.

Another important issue we want to address is local debugging in connection with
modular-programming concepts. We want to clarify how the search for errors can be re-
stricted to suspicious program components and how program parts can be individually
debugged, yielding correctness of the overall program.

2.4. Specifications for answer-set programs

Most of the methods we are aiming at require information about the intended behaviour
of a program under consideration. For instance, for localising a bug in an erroneous pro-
gram, a debugging system needs to be aware of what the correct semantics of the program
is, in order to classify wrong behaviour. Thus, respective methods for specifying program
properties are needed. This point is important despite the widely held view that, because
of the declarative nature of ASP, logic programs can be seen as specifications themselves,
which, in turn, would eliminate the ubiquitous gap between specification and programming,
as argued by Baral [Bar03]. However, since the process of developing answer-set programs
is not as straightforward as the latter point of view might suggest, it may prove helpful
to describe the desired behaviour of a program in a way that is easier to achieve than the
program itself. This may be done, e.g., in the form of sample test cases, or formally defined
program properties, that only describe certain aspects of the intended semantics, vis-a-vis a
full specification as represented by a complete program. In any case, there is certainly some

3It is also worthwhile to mention here the work of Wittocx et al. [Wit09] on debugging ID-logic theories,
i.e., first-order theories with inductive definitions.



METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 5

subtlety in using declarative descriptions for a declarative language which requests paying
close attention to the practicability of studied specification formalisms.

2.5. Implementation

Complementing our theoretical investigations, we also plan to develop prototype imple-
mentations of our techniques. Towards providing effective support for developers, we want
to incorporate these into an integrated development environment (IDE). A few systems for
developing answer-set programs have been introduced so far [Per07, Sur07], but, despite
providing useful utilities, they are still in an early state of development and leave much
room for improvement. Besides the envisaged functionalities for specification, testing, and
debugging, our IDE should also allow customary functions like providing a code editor,
syntax checking, and syntax highlighting, which are rather trivial from a theoretical point
of view but handy in use. Moreover, we want to guarantee interoperability with most of
the available popular solvers. The IDE will be subject to continuous evaluation within the
laboratory courses on logic programming we teach regularly at our university, and it will
be made publicly available for, e.g., other universities and their teaching needs.

3. Conclusion

Providing intelligent development methodologies and tools constitutes a natural next
step in the evolution of ASP and will hopefully have a positive impact on this field as a whole.
Furthermore, with such techniques at hand, both expert as well as novice programmers will
have an enhanced access to powerful declarative problem-solving machineries.

For further information about the project, see
http://www.kr.tuwien.ac.at/research/projects/mmdasp/.

References

[Bar03] Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge
University Press, Cambridge, England, UK, 2003.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional, Boston, MA,
USA, 2002.

[Boe08] Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. Automatic composition of melodic
and harmonic music by answer set programming. In Maria Garcia de la Banda and Enrico Pontelli
(eds.), Proceedings of the 24th International Conference on Logic Programming (ICLP’08), Udine,
Italy, December 9-13, 2008, Lecture Notes in Computer Science, vol. 5366, pp. 160–174. Springer,
Berlin-Heidelberg, Germany, 2008.

[Boe09] Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. ANTON: Composing logic and
logic composing. In Esra Erdem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the
10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp.
542–547. Springer, Berlin-Heidelberg, Germany, 2009.

[Bra05] Martin Brain and Marina De Vos. Debugging logic programs under the answer-set semantics. In
Proceedings of the 3rd Workshop on Answer Set Programming: Advances in Theory and Imple-
mentation (ASP’05), Bath, UK, July 27-29, 2005, CEUR Workshop Proceedings, vol. 142. CEUR-
WS.org, Aachen, Germany, 2005.



6 J. OETSCH, J. PÜHRER, AND H. TOMPITS

[Bra07] Martin Brain, Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits, and Stefan Woltran.
Debugging ASP programs by means of ASP. In Chitta Baral, Gerhard Brewka, and John S. Schlipf
(eds.), Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), Tempe, AZ, USA, May 15-17, 2007, Lecture Notes in Computer Science,
vol. 4483, pp. 31–43. Springer, Berlin-Heidelberg, Germany, 2007.

[Bro94] Antonio Brogi, Paolo Mancarella, Dino Pedreschi, and Franco Turini. Modular logic programming.
ACM Transactions on Programming Languages and Systems, 16(4):1361–1398, 1994.

[Den09] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw Truszczynski. The
second answer set programming competition. In Esra Erdem, Fangzhen Lin, and Torsten Schaub
(eds.), Proceedings of the 10th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09), Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer
Science, vol. 5753, pp. 637–654. Springer, Berlin-Heidelberg, Germany, 2009.

[DS99] Daniel De Schreye and Marc Denecker. Assessment of some issues in CL-theory and program
development. In Krzysztof R. Apt, Victor Marek, Miroslaw Truszczynski, and David S. Warren
(eds.), The Logic Programming Paradigm: A 25 Years Perspective, Artificial Intelligence Series,
pp. 195–208. Springer, Berlin-Heidelberg, Germany, 1999.

[Eit99] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend of the
dlv system. AI Communications, 12(1–2):99–111, 1999.

[Eit05] Thomas Eiter, Hans Tompits, and Stefan Woltran. On solution correspondences in answer-set
programming. In Leslie Pack Kaelbling and Alessandro Saffiotti (eds.), Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, Scotland, UK,
July 30-August 5, 2005, pp. 97–102. Professional Book Center, Denver, CO, USA, 2005.

[Eit07] Thomas Eiter, Michael Fink, and Stefan Woltran. Semantical characterizations and complexity
of equivalences in answer set programming. ACM Transactions on Computational Logic, 8(3):17,
2007.

[Erd09a] Esra Erdem. PHYLO-ASP: Phylogenetic systematics with answer set programming. In Esra Er-
dem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the 10th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’09), Potsdam, Germany, Septem-
ber 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp. 567–572. Springer, Berlin-
Heidelberg, Germany, 2009.

[Erd09b] Esra Erdem, Ozan Erdem, and Ferhan Türe. HAPLO-ASP: Haplotype inference using answer
set programming. In Esra Erdem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the
10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp.
573–578. Springer, Berlin-Heidelberg, Germany, 2009.

[Fin08] Michael Fink. Equivalences in answer-set programming by countermodels in the logic of here-and-
there. In Maria Garcia de la Banda and Enrico Pontelli (eds.), Proceedings of the 24th International
Conference on Logic Programming (ICLP’08), Udine, Italy, December 9-13, 2008, Lecture Notes
in Computer Science, vol. 5366, pp. 99–113. Springer, Berlin-Heidelberg, Germany, 2008.

[Geb08] Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-programming technique
for debugging answer-set programs. In Dieter Fox and Carla P. Gomes (eds.), Proceedings of the
23rd AAAI Conference on Artificial Intelligence (AAAI’08), Chicago, IL, USA, July 13-17, 2008,
pp. 448–453. AAAI Press, Menlo Park, CA, USA, 2008.

[Gel88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In
Proceedings of the 5th International Conference on Logic Programming (ICLP’88), Seattle, WA,
USA, August 15-19, 1988, pp. 1070–1080. The MIT Press, 1988.

[Gel91a] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

[Gel91b] Michael Gelfond and Halina Przymusińska. Definitions in epistemic specifications. In Wiktor
Marek, Anil Nerode, and V. S. Subrahmanian (eds.), Proceedings of the 1st International Workshop
on Logic Programming and Non-monotonic Reasoning (LPNMR’91), Washington, D.C., USA,
July 23, 1991, pp. 245–259. MIT Press, Cambridge, MA, USA, 1991.

[Gel96] Michael Gelfond and Halina Przymusińska. Towards a theory of elaboration tolerance: Logic pro-
gramming approach. Journal on Software and Knowledge Engineering, 6(1):89–112, 1996.



METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 7

[Gel01] Michael Gelfond, Marcello Balduccini, and Joel Galloway. Diagnosing physical systems in A-prolog.
In Thomas Eiter, Wolfgang Faber, and MirosÃlaw Truszczyński (eds.), Proceedings of the 6th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01), Vi-
enna, Austria, September 17-19, 2001, Lecture Notes in Computer Science, vol. 2173, pp. 213–225.
Springer, Berlin-Heidelberg, Germany, 2001.

[Gel02] Michael Gelfond. The USA-Advisor: A case study in answer set programming. In Sergio Flesca,
Sergio Greco, Nicola Leone, and Giovambattista Ianni (eds.), Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA’02), Cosenza, Italy, September, 23-26, 2002,
Lecture Notes in Computer Science, vol. 2424, pp. 566–568. Springer, Berlin-Heidelberg, Germany,
2002.

[Hel03] Keijo Heljanko and Ilkka Niemelä. Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming, 3(4-5):519–550, 2003.

[Het91] William C. Hetzel and Bill Hetzel. The Complete Guide to Software Testing. John Wiley & Sons,
Inc., New York, NY, USA, 1991.

[Iel09] Salvatore Maria Ielpa, Salvatore Iiritano, Nicola Leone, and Francesco Ricca. An ASP-based sys-
tem for e-tourism. In Esra Erdem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the
10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp.
368–381. Springer, Berlin-Heidelberg, Germany, 2009.

[Ino04] Katsumi Inoue and Chiaki Sakama. Equivalence of logic programs under updates. In José Júlio
Alferes and João Alexandre Leite (eds.), Proceedings of the 9th European Conference on Logics
in Artificial Intelligence (JELIA’04), Lisbon, Portugal, September 27-30, 2004, Lecture Notes in
Computer Science, vol. 3229, pp. 174–186. Springer, Berlin-Heidelberg, Germany, 2004.

[Jan09] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity aspects of
disjunctive stable models. Journal of Artificial Intelligence Research, 35:813–857, 2009.

[Lif01] Vladimir Lifschitz, David Pearce, and Agust́ın Valverde. Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

[Mik07] Artur Mikitiuk, Eric Moseley, and MirosÃlaw Truszczyński. Towards debugging of answer-set pro-
grams in the language PSpb. In Proceedings of the 2007 International Conference on Artificial
Intelligence (ICAI’07), Las Vegas, NV, USA, June 25-28, 2007, vol. II, pp. 635–640. CSREA
Press, 2007.

[Mil09] Alessandra Mileo, Davide Merico, and Roberto Bisiani. Non-monotonic reasoning supporting wire-
less sensor networks for intelligent monitoring: The SINDI system. In Esra Erdem, Fangzhen Lin,
and Torsten Schaub (eds.), Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’09), Potsdam, Germany, September 14-18, 2009, Lecture
Notes in Computer Science, vol. 5753, pp. 585–590. Springer, Berlin-Heidelberg, Germany, 2009.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, New York, NY, USA, 1979.
[Nie10] Ilkka Niemelä, Tomi Janhunen, Johannes Oetsch, Jörg Pührer, and Hans Tompits. On testing

answer-set programs. In Proceedings of the 19th European Conference on Artificial Intelligence
(ECAI’10), Lisbon, Portugal, August 16-20. 2010. To appear.

[Oet07] Johannes Oetsch, Hans Tompits, and Stefan Woltran. Facts do not cease to exist because they are
ignored: Relativised uniform equivalence with answer-set projection. In Proceedings of the 22nd
Conference on Artificial Intelligence (AAAI’07 ), Vancouver, BC, Canada, July 22-26, 2007, pp.
458–464. AAAI Press, Menlo Park, CA, USA, 2007.

[Oet08] Johannes Oetsch and Hans Tompits. Program correspondence under the answer-set semantics: The
non-ground case. In Maria Garcia de la Banda and Enrico Pontelli (eds.), Proceedings of the 24th
International Conference on Logic Programming (ICLP’08), Udine, Italy, December 9-13, 2008,
Lecture Notes in Computer Science, vol. 5366, pp. 591–605. Springer, Berlin-Heidelberg, Germany,
2008.

[Oet10] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the Ouroboros: Towards debugging
non-ground answer-set programs. Theory and Practice of Logic Programming. Special Issue on the
2010 International Conference on Logic Programming, 2010.



8 J. OETSCH, J. PÜHRER, AND H. TOMPITS

[Oik06] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for normal logic programs. In Gerhard
Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso (eds.), Proceedings of the 17th Euro-
pean Conference on Artificial Intelligence (ECAI’06), Riva del Garda, Italy, August 28-September
1, 2006, pp. 412–416. IOS Press, Amsterdam, The Netherlands, 2006.

[Pal09] Alessandro Dal Palù, Agostino Dovier, and Enrico Pontelli. Logic programming techniques in
protein structure determination: Methodologies and results. In Esra Erdem, Fangzhen Lin, and
Torsten Schaub (eds.), Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’09), Potsdam, Germany, September 14-18, 2009, Lecture
Notes in Computer Science, vol. 5753, pp. 560–566. Springer, Berlin-Heidelberg, Germany, 2009.

[Per07] Simona Perri, Francesco Ricca, Giorgio Terracina, Daniela Cianni, and Pierfrancesco Veltri. An
integrated graphic tool for developing and testing DLV programs. In Marina De Vos and Torsten
Schaub (eds.), Proceedings of the 1st International Workshop on Software Engineering for Answer
Set Programming (SEA’07), Tempe, AZ, USA, May 14, 2007, CEUR Workshop Proceedings, vol.
281, pp. 71–85. CEUR-WS.org, Aachen, Germany, 2007.

[Pon09] Enrico Pontelli, Tran Cao Son, and Omar El-Khatib. Justifications for logic programs under answer
set semantics. Theory and Practice of Logic Programming, 9(1):1–56, 2009.

[Sur07] Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch. APE: An AnsProlog* environ-
ment. In Marina De Vos and Torsten Schaub (eds.), Proceedings of the 1st International Workshop
on Software Engineering for Answer Set Programming (SEA’07), Tempe, AZ, USA, May 14, 2007,
CEUR Workshop Proceedings, vol. 281, pp. 71–85. CEUR-WS.org, Aachen, Germany, 2007.

[Syr06] Tommi Syrjänen. Debugging inconsistent answer-set programs. In Proceedings of the 11th Inter-
national Workshop on Nonmonotonic Reasoning (NMR’06), Lake District, U.K., May 30-June 1,
2006, IfI Technical Report Series, vol. IfI-06-04, pp. 77–83. Institut für Informatik, Technische
Universität Clausthal, Clausthal-Zellerfeld, Germany, 2006.

[Tru09] MirosÃlaw Truszczyński and Stefan Woltran. Relativized hyperequivalence of logic programs for
modular programming. Theory and Practice of Logic Programming, 9(6):781–819, 2009.

[Wit09] Johan Wittocx, Hanne Vlaeminck, and Marc Denecker. Debugging for model expansion. In Patri-
cia M. Hill and David Scott Warren (eds.), Proceedings of the 25th International Conference on
Logic Programming (ICLP’09), Pasadena, CA, USA, July 14-17, 2009, Lecture Notes in Computer
Science, vol. 5649, pp. 296–311. Springer, Berlin-Heidelberg, Germany, 2009.

If accepted for publication by ICLP, this work will be licensed under the Creative Commons Non-Commercial No
Derivatives License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.


