
Dealing with Inconsistency when Combining
Ontologies and Rules using DL-Programs?

Jörg Pührer, Stijn Heymans, and Thomas Eiter

Institute of Information Systems 184/3
Vienna University of Technology

Favoritenstraße 9–11, A–1040 Vienna, Austria
{puehrer,heymans,eiter}@kr.tuwien.ac.at

Abstract. Description Logic Programs (DL-programs) have been intro-
duced to combine ontological and rule-based reasoning in the context of
the Semantic Web. A DL-program loosely combines a Description Logic
(DL) ontology with a non-monotonic logic program (LP) such that dedi-
cated atoms in the LP, called DL-atoms, allow for a bidirectional flow of
knowledge between the two components. Unfortunately, the information
sent from the LP-part to the DL-part might cause an inconsistency in
the latter, leading to the trivial satisfaction of every query. As a con-
sequence, in such a case, the answer sets that define the semantics of
the DL-program may contain spoiled information influencing the overall
deduction. For avoiding unintuitive answer sets, we introduce a refined
semantics for DL-programs that is sensitive for inconsistency caused
by the combination of DL and LP, and dynamically deactivates rules
whenever such an inconsistency would arise. We analyze the complexity
of the new semantics, discuss implementational issues and introduce a
notion of stratification that guarantees uniqueness of answer sets.

1 Introduction

Recently, combinations of rule formalisms and ontologies (in particular Descrip-
tion Logic (DL) theories [1]) have gained increasing interest in the Semantic
Web community. This is reflected in the Semantic Web Layer Architecture that
envisions a Rules Layer complementing the Ontology Layer as a means for so-
phisticated representation and reasoning. A major issue in systems integrating
rules and ontologies is how to realize the semantics of their combination.

A popular approach in this respect is loose coupling, i.e., the two compo-
nents, ontology and rules, act separately but communicate via a well-defined
interface. A realization of this approach is given by Description Logic Programs
(DL-programs) [2], which combine a DL ontology with a logic program (LP).
The semantics of the formalism is given by an extension of the stable-model
semantics [3] that allows for using default negation for non-monotonic reasoning.
DL-programs follow the answer set programming paradigm [4], where the pro-
gram can be seen as a problem and the resulting stable models, called answer
? This work is partially supported by the Austrian Science Fund (FWF) projects

P20840 and P21698, and by the EC FP7 project OntoRule (IST-2009-231875).

sets correspond to different solutions of this problem. The interface between the
logic programming part and the Description Logic ontology, which is seen as
a black box, is realized by dedicated atoms in the premises of the rules, called
DL-atoms, which allow for a bidirectional exchange of information. The flow of
information from the rules to the ontology provides a powerful tool, as results
from the program can be used as assertions in the DL for further deduction.

However, it is possible that the assertions by which the ontology is extended
cause an inconsistency. We say that in such a case the respective DL-atom is
DL-inconsistent. As then the respective query is trivially true, we may end up
with counterintuitive results, even though both the DL and the LP are perfectly
consistent in separation.

In this work, we introduce a semantics, called the DL-inconsistency tolerant
semantics, that aims at avoiding this effect by dynamically switching rules off
whenever DL-inconsistency occurs. Thus, information derived from an inconsis-
tency only cannot influence the reasoning in the LP-part.
The main contributions of this paper can be summarized as follows:

– We introduce a refined semantics for DL-programs that avoids unintuitive
answer sets caused by DL-inconsistency and properly extends the answer set
semantics for normal logic programs.

– We analyze the complexity of deciding whether a DL-program has an an-
swer set under the new semantics. The problem turns out to be NExp-
Time-complete for many popular Description Logics. Moreover, we show that
reasoning in our formalism can be reduced to reasoning in HEX-programs [5].
An implementation of our approach is targeted within the OntoRule project.

– We define a stratification property that guarantees the uniqueness of answer
sets under the new semantics and ExpTime-completeness of deciding answer
set existence. Based on these results, we present an algorithm for computing
the answer set of a stratified program whenever one exists.

The remainder of the paper is organized as follows. In the next section, we
give preliminaries on normal logic programs under the answer set semantics,
Description Logics, and DL-programs. Section 3 explains the problem to be
tackled in the paper, using an illustrative running example, and introduces the
concept of DL-inconsistency. After introducing our new semantics in Section 4,
we deal with various computational aspects in Section 5, discussing complexity
and implementation issues, and introducing an adequate notion of stratification
for the refined semantics. For brevity, we include here only selected proofs.

2 Preliminaries

2.1 Normal Programs under the Answer Set Semantics

An LP-signature Σ = 〈F ,P〉 is a first-order signature such that F is a nonempty
finite set of 0-ary function symbols (constants) and P is a nonempty finite set of
predicate symbols. A term is any variable from a set of variables V or constant

symbol from F . An atom is of form p(t1, . . . , tn), where p ∈ P is a predicate
symbol of arity n≥0 and t1, . . . , tn are terms. A (classical) literal l is an atom a
or a negated atom ¬a. A negation as failure literal (or NAF-literal) is a literal l
or a default-negated literal not l. A normal rule (simply, rule) r is of the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m ≥ k ≥ 0 , (1)

where a, b1, . . . , bm are classical literals. The literal a is the head of r, denoted
by H(r), and the conjunction b1, . . . , bk,not bk+1, . . . ,not bm is the body of r;
its positive (resp., negative) part is b1, . . . , bk (resp., not bk+1, . . . ,not bm). We
denote by B(r) the set of body literals B(r)+∪B(r)−, where B(r)+ = {b1, . . . , bk}
and B(r)− = {bk+1, . . . , bm}. A (normal) program Π (over Σ) is a finite set of
rules; Π is positive iff it is “not ”-free.

The Herbrand universe of a program Π is the set HU(Π) ⊆ F of all constant
symbols in Π (if no such symbol exists, HU(Π) = {c} for an arbitrary constant
symbol c from F). Moreover, the Herbrand base of a program Π, denoted HB(Π),
is the set of all ground (classical) literals with predicate symbols appearing in Π
and constant symbols from HU(Π). The notions of ground terms, atoms, literals
etc. are as usual. We denote by grS(Π) the grounding of Π w.r.t a set S ⊆ F
of constants, i.e., the ground rules originating from rules in Π by replacing, per
rule, each variable by each possible combination of constants in S.

A set of literals X ⊆ HB(Π) is consistent iff {p,¬p} 6⊆X for every atom
p ∈ HB(Π). An interpretation I relative to Π is a consistent subset of HB(Π). I
satisfies the positive (resp., negative) body of a rule r, symbolically I |= B(r)+

(resp., I |= B(r)−), if B(r)+ ⊆ I (resp., I ∩B(r)− = ∅). I satisfies the body of r,
denoted I |= B(r), if I |= B(r)+ and I |= B(r)−. I satisfies a rule r, symbolically
I |= r, if H(r) ∈ I whenever I |= B(r). An interpretation I ⊆ HB(Π) is a model
of a program Π, denoted by I |= Π, if every r ∈ grHU(Π)(Π) is satisfied by I.
An answer set of a positive program Π is the least model of Π w.r.t. ⊆.

Answer sets were traditionally defined in terms of the Gelfond-Lifschitz reduct
[3]. We here use the equivalent definition of answer sets by means of the FLP-
reduct of Πrelative to an interpretation I ⊆ HB(Π), denoted ΠI

FLP , following
Faber, Leone, and Pfeifer [6]. It has been introduced for an intuitive handling
of aggregates in answer set programming and is a special case of the t-reduct
that we use for defining the semantics introduced in this paper. The FLP-reduct
of Πrelative to an interpretation I ⊆ HB(Π), denoted ΠI

FLP , is the set of rules
r ∈ grHU(Π)(Π) such that I |= B(r). Then, I is an answer set of Πiff I is a
minimal model of ΠI

FLP .

Example 1. As a simple example, consider the program P that consists of the
three rules c(t), a(t)← not b(t), and b(t)← c(t),not a(t). It has two answer sets,
viz. I1 = {c(t), a(t)} and I2 = {c(t), b(t)}.

2.2 Description Logics

The approach to resolving inconsistencies caused by DL-atoms is to a large
extent independent of a specific Description Logic (DL) [1]. For a particular DL
knowledge base Φ, we will assume that

– it is defined over a signature Σo = 〈F ,Po〉 with individuals from F and
concept and role names from Po ,

– it is able to deal with ground unary or binary literals, i.e., an expression Φ ∪
{C(a),¬C(a), R(a, b),¬R(a, b)} is well-defined for unary (binary) predicates
C (R) from Po and individuals a from F , and

– it defines an entailment relation |= such that Φ |= Q(t) is defined for DL-
queries Q(t) and indicates that all models of Φ satisfy Q(t).

A DL-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or
(b) of the forms C(t) or ¬C(t), where C is a concept and t is a term; or
(c) of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

Exemplary DLs that satisfy these minimum requirements are SHOIN (D)
and SROIQ(D) which provide the logical underpinnings of the Web ontology
languages OWL DL and OWL 2 (see [7; 8; 9] for further background). In what
follows we assume that the reader is familiar with standard DL syntax.

Example 2 (Product Database). As our running example, we will adapt an
example that has been used previously in the context of DL-programs [10].

A small computer store obtains its hardware from several vendors. It uses the
following DL knowledge base Φex , which contains information about the product
range that is provided by each vendor. For some parts, a shop may already be
contracted as supplier and shops which are known to be disapproved for some
reason can never become an actual supplier.

≥ 1 supplier v Shop; > v ∀supplier .Part ;
∃supplier .> u disapproved v⊥;
Shop(s1); Shop(s2); Shop(s3); disapproved(s2);
Part(harddisk); Part(cpu); Part(case);
provides(s1, cpu); provides(s1, case); provides(s2, cpu);
provides(s3, harddisk); provides(s3, case);
supplier(s3, case);

Here, the first two axioms determine Shop and Part as domain and range of the
property supplier , respectively, while the third axiom constitutes the incongruity
between shops that are contracted as supplier but are explicitly disapproved.

2.3 DL-Programs

Syntax A signature Σ = 〈F ,Po ,Pp〉 for DL-programs consists of a set F of 0-ary
function symbols and sets Po , Pp of predicate symbols such that Σo = 〈F ,Po〉
is a DL-signature and Σp = 〈F ,Pp〉 is an LP-signature.

Informally, a DL-program consists of a Description Logic ontology Φ over Σo

and a normal program Π over Σp , which may contain queries to Φ. Roughly,
in such a query, it is asked whether a certain Description Logic formula or its
negation logically follows from Φ or not.

A DL-atom a(t) has the form

DL[S1 op1 p1, . . . , Sm opm pm; Q](t) , m ≥ 0, (2)

where each Si is either a concept or a role predicate from Po , opi ∈ {], −∪, −∩},
pi is a unary, resp. binary, predicate symbol from Pp , and Q(t) is a DL-query.
We call γ = S1 op1 p1, . . . , Sm opm pm the input signature and p1, . . . , pm the
input predicate symbols of a(t). Moreover, literals over input predicate symbols
are input literals. Intuitively, opi =] (resp., opi = −∪) increases Si (resp., ¬Si)
by the extension of pi, while opi = −∩ constrains Si to pi. A DL-rule r has the
form (1), where any literal b1, . . . , bm ∈ B(r) may be a DL-atom. A DL-program
KB = (Φ, Π) consists of a DL ontology Φ and a finite set of DL-rules Π.

Example 3. Consider the DL-program KBex = (Φex , Πex), with Φex as in Exam-
ple 2 and Πex given as follows, choosing not-deterministically a vendor for each
needed part:

(1) needed(cpu); needed(harddisk); needed(case);
(2) alreadyContracted(P)← DL[; supplier](S, P),needed(P);

(3) offer(S, P)← DL[; provides](S, P),needed(P),not alreadyContracted(P);

(4) chosen(S, P)← offer(S, P),not notChosen(S, P);
(5) notChosen(S, P)← offer(S, P),not chosen(S, P);

(6) supplied(S, P)← DL[supplier] chosen; supplier](S, P),needed(P);

(7) anySupplied(P)← supplied(S, P),needed(P);

(8) fail ← not fail ,needed(P),not anySupplied(P).

Rule (2) extracts information on which parts already have a fixed vendor assigned
from the DL, whereas Rule (3) imports the available offers for the needed parts
not yet assigned. Rules (4)-(5) nondeterministically decide whether an offer
should be chosen. Rule (6) summarizes the purchasing results by first sending
the chosen assignments of vendors and parts from the LP-part to the ontology,
and then querying for the overall supplier relation. Finally, Rules (7)-(8) ensure
that for every needed part there is a vendor chosen who supplies it. Note that
Rule (8) acts as a constraint where the occurrences of the auxiliary atom fail in
both, head and positive body, prevents all interpretations containing needed(t)
but not anySupplied(t) for any term t from being an answer set. As we will see
in Section 3, Φex has one intended and one counterintuitive answer set.

Semantics In the sequel, let KB = (Φ, Π) be a DL-program over Σ = 〈F ,Po ,Pp〉.
By gr(Π) we denote the grounding of Π w.r.t F , i.e., the set of ground rules
originating from DL-rules in Π by replacing, per DL-rule, each variable by each
possible combination of constants in F .

An interpretation I (over Σp) is a consistent subset of literals over Σp . We
say that I satisfies a classical literal l under Φ, denoted I |=Φ l, iff l ∈ I, and a
ground DL-atom a = DL[S1op1 p1, . . . , Smopmpm; Q](c) under Φ, denoted I |=Φ a,
if Φ ∪ τ I(a) |= Q(c), where the extension τ I(a) of a under I is defined as
τ I(a) =

⋃m
i=1 Ai(I) such that

– Ai(I) = {Si(e) | pi(e) ∈ I}, for opi =];
– Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(e) | pi(e) /∈ I}, for opi = −∩.

We say that I satisfies the positive (resp., negative) body of a ground DL-rule
r under Φ, symbolically I |=Φ B(r)+ (resp., I |=Φ B(r)−), if I |=Φ l (resp., I 6|=Φ l)
for all l ∈ B(r)+ (resp., l ∈ B(r)−). I satisfies the body of r under Φ, denoted
I |=Φ B(r), whenever I |=Φ B(r)+ and I |=Φ B(r)−. I satisfies a ground DL-rule
r under Φ, symbolically I |=Φr, if I |=Φ H(r) whenever I |=Φ B(r). I is a model
of a DL-program KB = (Φ, Π), denoted I |= KB, iff I |=Φ r for all r ∈ gr(Π). We
say KB is satisfiable (resp., unsatisfiable) iff it has some (resp., no) model.

In this paper, we base the answer set semantics of DL-programs on the
Faber-Leone-Pfeifer reduct, rather than on the Gelfond-Lifschitz reduct.

Definition 1. Let Σ = 〈F ,Po ,Pp〉 be a signature for DL-programs, Φ a DL
knowledge base over 〈F ,Po〉, Πa set of ground DL-rules over Σp = 〈F ,Pp〉, and
I an interpretation over Σp. The FLP-reduct ΠI,Φ

FLP of Π under Φ relative to I

is the set of rules r ∈ Π such that I |=Φ B(r). Moreover, the FLP-reduct KBI
FLP

of a (possibly non-ground) DL-program KB = (Φ, Π) relative to I is given by
gr(Π)I,Φ

FLP .

Definition 2. Let KB be a DL-program over Σ = 〈F ,Po ,Pp〉. An interpretation
I over Σp is an answer set of KB if it is a minimal model of KBI

FLP . The set of
all answer sets of KB is denoted by AS(KB).

We use this answer set semantics (we will sometimes refer to it as FLP-semantics),
as it naturally handles DL-atoms which are not monotonic.

Definition 3. For a DL-program KB = (Φ, Π), a ground DL-atom l is mono-
tonic relative to KB, if for all interpretations I, J with I ⊆ J , I |=Φ l implies
J |=Φ l. KB is monotonic if gr(Π) contains only DL-atoms that are monotonic
relative to KB.

It was shown in [5] that for DL-programs that do not employ the −∩ operator,
the FLP-semantics coincides with strong answer set semantics, as originally
introduced for DL-programs [2] using the Gelfond-Lifschitz reduct. Note that
this operator is rarely used in practice and can in many cases (e.g., for t-stratified
DL-programs, cf. Section 5) be removed by simple translations.

We will later refer to the class of positive DL-programs, defined in [2] as
follows.

Definition 4. A DL-program KB is positive, if it is monotonic and B(r)− = ∅
for each rule r ∈ Π.

Note that a DL-atom a that does not employ the operator −∩ is always
monotonic as I ⊆ J implies τ I(a) ⊆ τJ(a).

3 Inconsistency when Combining Ontologies and Rules

We will now look at the semantics of our example DL-program in order to
illustrate the core problem we want to tackle in our approach.

Example 4. KBex has two answer sets, I1 and I2, both containing the same atoms
of predicates needed , offer , alreadyContracted , and anySupplied :

I ′ = { needed(cpu),needed(harddisk),needed(case), alreadyContracted(case),
offer(s1, cpu), offer(s2 , cpu), offer(s3 , harddisk),
anySupplied(cpu), anySupplied(harddisk), anySupplied(case)}

The remaining atoms of I1 are given by

I1 \ I ′ = {chosen(s1, cpu), chosen(s3 , harddisk),notChosen(s2 , cpu),
supplied(s1, cpu), supplied(s3 , harddisk), supplied(s3 , case)} ,

expressing a solution where the cpu is provided by shop s1, whereas harddisk
and case are delivered by vendor s3.

The second answer set might seem surprising at first sight:

I2 \ I ′ = {chosen(s2, cpu), chosen(s3 , harddisk),notChosen(s2 , cpu),
supplied(s1, cpu), supplied(s1 , harddisk), supplied(s1 , case),
supplied(s2, cpu), supplied(s2 , harddisk), supplied(s2 , case),
supplied(s3, cpu), supplied(s3 , harddisk), supplied(s3 , case),
supplied(cpu, cpu), supplied(cpu, harddisk), supplied(cpu, case),
supplied(harddisk, cpu), supplied(harddisk , harddisk),
supplied(harddisk, case), supplied(case, cpu), supplied(case, harddisk),
supplied(case, case)}

Apparently a situation is described in which each of the shops s1, s2, and
s3 supplies each of the needed hardware parts cpu, case, and harddisk , al-
though the intention was that only a single shop supplies one part. Moreover,
we also have atoms like supplied(cpu, harddisk) in I2, completely lacking in-
tuition, as the first argument of predicate supplied is supposed to refer to
vendors only. The reason for the unintuitive results lies in an inconsistency
emerging in the combination of the ontology and the logic programming part
of KBex . Note that atom chosen(s2, cpu) ∈ I2 suggests that shop s2 has been
chosen to deliver the cpu, although this shop is identified as disapproved in
the DL-part (cf. Example 2). Consider any ground instance a′ of DL-atom
a = DL[supplier] chosen; supplier](S, P) in Rule (6) of extended logic pro-
gram Πex . We then have τ I(a′) = {supplier(e) | chosen(e) ∈ I} and therefore
supplier(s2, cpu) ∈ τ I (a ′). As a consequence, Φ ∪ τ I(a′) is inconsistent since
¬supplier(s2, cpu) follows from the axioms ∃supplier .> u disapproved v⊥ and
disapproved(s2) in Φex . Due to this inconsistency every ground instance of a is
true under I2.

Whenever information, passed from the logic programming part Πto the
ontology Φ of a DL-Program, is inconsistent with Φ, unintuitive answer sets may

arise as a consequence of trivial satisfaction of DL-atoms. In such cases we call
the respective DL-atom DL-inconsistent.

Definition 5. Let KB = (Φ, Π) be a DL-program and I an interpretation relative
to Π. A ground DL-atom a = DL[γ; Q](c) is DL-consistent under I w.r.t. Φ,
if (1) Φ |= Q(c) or (2) Φ ∪ τ I(a) is consistent, otherwise a is DL-inconsistent
under I w.r.t. Φ.

Intuitively, we are interested in avoiding using rules that have DL-inconsistent
atoms in their bodies. Note that we use a notion of “inconsistence” that pertains to
updates of the ontology: if some atom Q(c) is entailed by the original ontology, we
assume it is DL-consistent, even if updates via γ make the ontology inconsistent.
Indeed, if Φ |= Q(c), we also have Φ ∪ τ I(a) |= Q(c) for any update τ I(a) due
to monotonicity of usual Description Logics. If we would not take this case into
account, we would disregard the whole rule (as seen in Definition 6).

4 DL-Inconsistency Tolerant Semantics

In what follows we introduce and discuss a refined semantics for DL-programs
that limits the negative side effects of DL-inconsistency. The central idea is
to deactivate a rule whenever a DL-atom contained in its body becomes DL-
inconsistent, in order to behave tolerant in the sense that flawed information does
not influence the derived results. This way literals with unexpected argument types
such as supplied(cpu, harddisk) in Example 4, can be avoided in the information
flow from the ontology to the logic program.

Definition 6. Let KB = (Φ, Π) be a DL-program and I an interpretation. I t-
satisfies the body of a ground DL-rule r under Φ, denoted I |=Φ

t B(r) if I |=Φ B(r)
and all DL-atoms in B(r) are DL-consistent under I w.r.t. Φ. Moreover, I t-
satisfies r under Φ, symbolically I |=Φ

t r, if I |=Φ
t B(r) implies that I |=Φ H(r). I

is a t-model of a set Q of ground DL-rules under Φ denoted I |=Φ
t Q if I |=Φ

t r
for all r ∈ Q. Finally, I is a t-model of KB, denoted I |=t KB, if I |=Φ

t gr(Π).

Note that every model of KB is also a t-model of KB. Moreover, if DL-atoms
occur only in the negative bodies of rules in Π, also the converse holds. The
reason for the latter is that a rule that is not applicable under DL-inconsistency
tolerant semantics only because of a DL-inconsistent DL-atom a ∈ B(r)− for
some rule r ∈ Π would also not be applicable under standard semantics as a
would be satisfied as a consequence of DL-inconsistency.

Example 5. Consider the ground instantiation

r = supplied(cpu, harddisk)←DL[supplier] chosen; supplier](cpu, harddisk),
needed(harddisk)

of Rule (6) of our running example. For interpretation I2, as defined in Example 4,
we have that I2 |=Φ B(r) but, as the DL-atom in B(r) is DL-inconsistent under
I2 w.r.t. Φex , it holds that I2 6|=Φ

t B(r). As H(r) ∈ I2, both I2 |=Φ r and I2 |=Φ
t r.

More general, since I2 is a model of KBex it is also a t-model of KBex . However,
as we will see next, I2 is not a t-answer set of KBex .

For defining the notion of a t-answer set, we first give a modified version of
the FLP-reduct, called t-reduct.

Definition 7. Let Σ = 〈F ,Po ,Pp〉 be a signature for DL-programs, Φ a DL
knowledge base over 〈F ,Po〉, Πa set of ground DL-rules over Σp = 〈F ,Pp〉, and
I an interpretation over Σp . The t-reduct ΠI,Φ

t of Π under Φ relative to I is the
set of rules r ∈ Π such that I |=Φ

t B(r). Moreover, the t-reduct KBI
t of a (possibly

non-ground) DL-program KB = (Φ, Π) relative to I is given by gr(Π)I,Φ
t .

Definition 8. Let KB be a DL-program. An interpretation I is a t-answer set
of KB, if I is a subset-minimal t-model of KBI

t . The set of all t-answer sets of
KB is denoted by ASt(KB).

Example 6. For the program KBex of the product database example, the only
t-answer set is given by interpretation I1, as defined in Example 4. As stated
in Example 5, I2 is a t-model of KBex ; however, I2 is not a minimal t-model of
(KBex)I2

t , as required in Definition 8 for being a t-answer set. In fact, the ground
instance of Rule (6) in Example 5 is not contained in (KBex)I2

t . Therefore, we
can remove the head of the rule, atom supplied(cpu, harddisk), from I2 such that
the resulting interpretation I ′2 is still a t-model of KBex .

Whenever no DL-atoms are present in a DL-program KB = (Φ, Π), DL-
inconsistency tolerant semantics reduces to answer set semantics of the ordinary
logic program Π. Therefore, the next result is a proper extension to a similar
one that is folklore for standard logic programs.

Theorem 1. For every t-answer set I of a DL-program KB, I is a minimal
t-model of KB.

Note that the converse does not generally hold. E.g., consider the set

I3 = I ′ ∪ {chosen(s2, cpu), chosen(s3 , harddisk),notChosen(s2 , cpu),
notChosen(s2, harddisk)} ,

where I ′ is given as in Example 4. I3 is a minimal t-model of KBex but, since
the ground instantiation

fail ← not fail ,needed(cpu),not anySupplied(cpu)

of Rule (8) from our example is not contained in (KBex)I3
t , we can remove

atom anySupplied(cpu) from I3 such that the resulting interpretation I ′3 is still
a t-model of (KBex)I3

t . Consequently, by Definition 8, I3 is no t-answer set of
KBex .

The next result relates the refined semantics to the FLP-semantics.

Proposition 1. Let KB = (Φ, Π) be a monotonic DL-program and let I be an
answer set of KB. If all DL-atoms in gr(Π) are DL-consistent under I w.r.t. Φ,
then I is a t-answer set of KB.

Note that DL-programs with no occurrences of the −∩ operator are monotonic and,
as remarked in Section 2, this operator can typically be avoided in applications.

While counterintuitive literals a là supplied(cpu, harddisk) cannot occur in a
t-answer set, Proposition 1 suggests that results that are intuitive are preserved
under the refined semantics, as answer sets of a DL-program where inconsistency
is immaterial are selected. On the other hand, a DL-program may have t-answer
sets that do not correspond to any answer set (due to inconsistency avoidance).

Example 7. Consider the DL-program KB = (Φ, Π) where Φ = {¬C(a)} and
Π = { p(a); fail ← not fail , DL[C] p; C](a) }. Clearly, KB has no answer set,
as the DL-atom in Π is DL-inconsistent; its single t-answer set is I = {p(a)}.

5 Computational Aspects

Translation to FLP Semantics The DL-inconsistency tolerant semantics of DL-
programs can be simulated by the FLP semantics as in Definition 2 using a linear
rule-by-rule transformation ρ(·) on generalized normal programs, defined as

ρ(Π) ={ρ(r) | r ∈ Π} ∪
{a′ ← DL[γ; > v ⊥],not DL[; Q](t) | r ∈ Π,not a ∈ A(r)}, where

ρ(r) = H(r)← B(r) ∪A(r), and
A(r) = {not a′ | a = DL[γ; Q](t) ∈ B(r)}.

In the translation for each DL-atom a = DL[γ; Q](t) occurring in the body
of a rule r, we add a new atom a′ to the negative body of r and a rule that
deduces a′ exactly when I |=Φ DL[γ; > v ⊥] and I 6|=Φ DL[; Q](t) for some
interpretation I, i.e., when Φ ∪ τ I(a) is inconsistent and Φ 6|= Q(c), and thus
a is DL-consistent. Deduction of a′ thus causes the body of the transformed
rule to be false under FLP-semantics corresponding exactly the case where the
atom a is DL-inconsistent. Thus for a rule r in Π under a DL-inconsistency
tolerant semantics and its corresponding rule ρ(r) in the transformed program
ρ(Π) under FLP-semantics, we have that r and ρ(r) have bodies whose truth
values correspond under the respective semantics, thus effectively mimicking the
DL-inconsistency tolerant semantics with the FLP-semantics.

Theorem 2. For every DL-program KB = (Φ, Π), ASt(KB) = {I ∩ HB(Π) |
I ∈ AS((Φ, ρ(Π)))}.

By means of this translation, the t-answer sets of KB can be computed utilizing
DLVHEX, a solver for non-monotonic logic programs admitting higher-order
atoms and external atoms, or HEX-programs for short [5], that have a semantics
based on the FLP-reduct. A plug-in for evaluating DL-programs, without the −∩
operator, is available for DLVHEX that gives access to the DL-knowledge base
by means of a third-party DL-reasoner [11; 12].

Due to the close relationship to HEX-programs, results on their computational
complexity carry over to DL-inconsistency tolerant semantics of DL-programs.
In particular, as corollaries of Theorem 7 and 8 in [5], due to the existence of
transformation ρ(·), we obtain the following two results.

Theorem 3. Given a DL-program KB = (Φ, Π), where query answering in Φ is
in complexity class C, deciding whether KB has a t-answer set is in NExpTimeC.

Theorem 4. Given a DL-program KB = (Φ, Π), where query answering in Φ is
in ExpTime, deciding whether KB has a t-answer set is NExpTime-complete.

Hardness in Theorem 4 follows from the special case of DL-programs without
any DL-atoms, for which the DL-inconsistency tolerant semantics reduces to the
standard answer set semantics of normal logic programs. It is known that answer
set existence for this class of programs is NExpTime-complete. On the other
side, membership follows again from the translation to HEX-programs, as it is
known that checking the answer sets of HEX-programs is NExpTime-complete
under the restriction that the external atoms can be evaluated in exponential
time [5].

The result is especially interesting as query answering is in ExpTime for
many important DLs such as the basic DL ALC, the DL underlying OWL-Lite
(SHIF), and the DLs corresponding to the fragments OWL 2 EL, OWL 2 RL,
OWL 2 QL of the upcoming standard for a Web Ontology Language [9].

Another important aspect of the complexity results is that for DL-programs,
reasoning under DL-inconsistency tolerant semantics is not harder than under
the FLP-semantics.

Stratification Eiter et al. [2] defined an iterative least model semantics for DL-
programs that have a certain stratification property (which we will here refer to
as standard stratification). The idea of stratification is to layer a program into
a number of ordered strata that can be efficiently evaluated one-by-one where
lower strata do not depend on higher strata.

A DL-program KB which is standard stratified has at most one answer set that
coincides with its iterative least model and conversely, if KB has an iterative least
model it coincides with the unique answer set of KB. However, a DL-program
that is standard stratified may have multiple t-answer sets. Too see this, note
that a positive DL-program always has a standard stratification with a single
stratum. Consider, e.g., the DL-program KB = (Φ, Π), with

Π = { h(c),
a(c)← DL[B −∪ b, H] h; H](c),
b(c)← DL[A −∪ a, H] h; H](c)} ,

where Φ |= A(c) and Φ |= B(c). This program has two t-answer sets, viz.
I1 = {a(c), h(c)} and I2 = {b(c), h(c)}.

In the following, we define a different kind of stratification (which we call
t-stratification) that guarantees a unique t-answer set iff the respective t-stratified
program has a t-answer set. The major difference to standard stratification is to
enforce that the information necessary for evaluating DL-atoms must be already
available on a strictly lower stratum then the current one during a computation.

Definition 9. A t-stratification of a DL-program KB = (Φ, Π) is a mapping
µ : HB(Π)∪D(Π)→ {0, 1, . . . , k}, where D(Π) is the set of DL-atoms occurring
in gr(Π), such that

(i) for each r ∈ gr(Π), µ(H(r)) ≥ µ(l′) for all l′ ∈ B(r)+, µ(H(r)) > µ(l′) for
all l′ ∈ B(r)−, and µ(H(r)) > µ(l′) for each DL-atom l′ ∈ B(r), and

(ii) µ(a) ≥ µ(l) for each input literal l of each DL-atom a ∈ D(Π).

We call k ≥ 0 the length of µ. For every i ∈ {0, . . . , k}, we then define the
DL-programs KBµ,i as (Φ, Πi), where Πi = {r ∈ gr(Π) | µ(H(r)) = i} and
KB∗µ,i as (Φ, Π∗

µ,i) where Π∗
µ,i = {r ∈ gr(Π) | µ(H(r)) ≤ i}. Likewise, we define

HBµ,i(Π) (resp., HB∗µ,i(Π)) as the set of all l ∈ HB(Π) such that µ(l) = i (resp.,
µ(l) ≤ i). We say that a DL-program KB is t-stratified, if it has a t-stratification
µ of length k ≥ 0. It is easy to see that for DL-programs without DL-atoms,
t-stratification reduces to standard stratification of logic programs. Moreover,
checking whether a DL-program is t-stratified and computing a t-stratification
can be done by modified algorithms for standard stratification in linear time.

Note that by Definition 9, KB∗µ,0 is always a positive DL-program without
DL-atoms. Consequently, Π0 coincides with a positive logic program, for which
DL-inconsistency tolerant semantics coincides with the answer set semantics of
logic programs. Therefore, the following proposition holds.

Proposition 2. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ.
Then, KB∗µ,0 has a unique minimal t-model that is also the unique t-answer set
of KB∗µ,0.

Next we want to establish uniqueness of t-answer sets for arbitrary strata.

Lemma 1. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ. If I1

and I2 are t-answer sets of KB∗µ,i for i ≥ 0, then I1 = I2.

As a consequence of this lemma and Proposition 2, we get the next result.

Theorem 5. Let KB be a t-stratified DL-program KB = (Φ, Π). If KB has a
t-answer set, then this t-answer set is unique.

As can be seen in the next result, the t-answer set of a t-stratified DL-program
is compositional in the sense that, roughly speaking, we get t-answer sets for the
part of the DL-program that is below a certain stratum, if we remove all atoms
of higher strata from I.

Theorem 6. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ. If I
is a t-answer set of KB∗µ,i for i > 0, then I ∩ HB∗µ,i−1(Π) is a t-answer set of
KB∗µ,i−1.

Approaching from this result, we aim at computing the t-answer set I of KB
step-by-step, starting with I ∩HB∗µ,0(Π) and extending the interpretation one
stratum a time until we reach I = I ∩HB∗µ,k(Π). Hence, we define a series of sets
∆i,h for each stratum i, that can be seen as the results of repeatedly applying a
consequence operator.

Definition 10. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ
and Ii−1 a t-answer set of KB∗µ,i−1 for some i > 0. We define sets of literals
∆i,h for h ≥ 0 as follows:

(i) ∆i,0 = ∅ and
(ii) ∆i,m =

⋃
o<m ∆i,o∪{H(r) | µ(H(r)) = i, Ii−1∪∆i,m−1 |=Φ

t B(r)} for m > 0.

As gr(Π) contains only a finite number of rules, and ∆i,h ⊆ ∆i,h+1 for all h, we
must always reach some fixpoint ∆i. That is, ∆i = ∆i,f when ∆i,f = ∆i,f+1.

In order to establish our main result on computing the unique t-answer set
(whenever one exists), we make use of the following lemma.

Lemma 2. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ. If
I1 and I2 are t-models of KB∗µ,i for i ≥ 0 such that I1 ∩ HB∗µ,i−1(Π) = I2 ∩
HB∗µ,i−1(Π) then I1 ∩ I2 is a t-model of KB∗µ,i.

Intuitively, when we can extend a t-model of lower strata of the DL-program to
a further stratum, there is always a subset minimal extension of this t-model.

By computing the t-answer set of KB∗µ,0 and subsequently ∆i for each stratum
i, we can compute the t-answer set of KB, whenever it exists:

Theorem 7. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ
and let I be a t-answer set of KB∗µ,i for some i > 0. Then, I = I ′ where
I ′ = (I ∩HB∗µ,i−1(Π)) ∪∆i.

Proof. Towards a contradiction assume I 6= I ′. From Theorem 5 follows that
I ′ 6∈ ASt(KB∗µ,i). As I is a minimal t-model of KB∗µ,i, we get I ∩ I ′ 6|=Φ

t Π∗
µ,i.

From this and Lemma 2 follows by modus tollens that I ′ 6|=Φ
t Π∗

µ,i. Hence, there
is a rule r ∈ Π∗

µ,i with I ′ |=Φ
t B(r) and I ′ 6|=Φ

t H(r). Consider the case that
µ(H(r)) < i. Then, I ′ 6|=Φ

t r is a contradiction to I |=Φ
t r, since I ∩HB∗µ,i−1(Π) =

I ′ ∩HB∗µ,i−1(Π). Now consider case µ(H(r)) = i and number m ≤ 0 such that
∆i,m = ∆i. As ∆i,m ⊆ I ′ and I ′ 6|=Φ

t H(r), we have H(r) 6∈ ∆i,m. Moreover,
since I ′ |=Φ

t B(r) and I ′ = (I ∩ HB∗µ,i−1(Π)) ∪∆i,m, by Definition 10 we have
that H(r) ∈ ∆i,m+1. As then ∆i,m 6= ∆i,m+1, we have a contradiction to ∆i,m

being the fixpoint ∆i. ut

So far we established that in case there is a t-answer set we can compute it
stratum by stratum. In the following, we provide means for deciding the existence
of a t-answer set during this computation.

Theorem 8. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ and
Ii−1 a t-answer set of KB∗µ,i−1 for some i > 0. If Ii = Ii−1 ∪∆i is a t-model of
KB∗µ,i then Ii is a t-answer set of KB∗µ,i.

This enables us to pursue the following approach. After computing Ii = Ii−1 ∪∆i

for a stratum i, we check whether I |=Φ
t Π∗

µ,i. If yes, we know by Theorem 8 that
Ii is a t-answer set of KB∗µ,i and we are either done or continue our computation
for stratum i+1. If I 6|=Φ

t Π∗
µ,i, we know by Theorem 7 that KB∗µ,i has no t-answer

set and stop the computation.
Algorithm 1 for computing the t-answer set of a given DL-program KB with

a t-stratification follows precisely this strategy after having computed the unique
t-answer set of KB∗µ,0. This can be done by a standard answer set solver as

Algorithm 1 Computing the t-answer set of a t-stratified DL-program KB
Require: KB = (Φ, Π), µ is a t-stratification of KB of length k ≥ 0
1: I0 := the unique t-answer set of KB∗µ,0 // computable in exponential time
2: for i := 1 to k do
3: // compute ∆i

4: ∆′ := ∅
5: repeat
6: ∆i := ∆′

7: for all r ∈ gr(Πi) do
8: // loop may have exponentially many iterations
9: // the following check requires two queries to Φ per DL-atom in B(r):

10: if ∆i ∪ Ii−1 |=Φ
t B(r) then

11: ∆′ := ∆′ ∪ {H(r)}
12: end if
13: end for
14: until ∆i = ∆′ // number of iterations limited by number of rules in gr(Πi)
15: Ii := Ii−1 ∪∆i

16: if Ii 6|=Φ
t gr(Π∗

µ,i) then
17: print ”KB has no t-answer set.”
18: return
19: end if
20: end for
21: return Ik // Ik is the unique t-answer set of KB

KB∗µ,0 does not involve DL-atoms. Overall, the algorithm runs in exponential
time with an additional effort of external calls to a DL-reasoner for evaluating
the DL-queries of DL-atoms in lines 10 and 16. The time necessary for this
evaluations depends on the complexity of query answering in the respective DL.
Altogether, there may be an exponential number of such calls.

Theorem 9. Given a DL-program KB = (Φ, Π) with t-stratification µ, where
query answering in Φ is in complexity class C, deciding whether KB has a
t-answer set is in ExpTimeC.

When query answering in Φ is possible in exponential time, in the worst case
the algorithm has to perform an exponential number of exponential time calls
which can in turn be done in exponential time.

Theorem 10. Given a DL-program KB = (Φ, Π) with t-stratification µ, where
query answering in Φ is in ExpTime, deciding whether KB has a t-answer set is
ExpTime-complete.

Hardness follows from ExpTime-completeness of ordinary stratified logic pro-
grams. For lightweight DLs such as those underlying OWL 2 EL, OWL 2 RL, and
OWL 2 QL, where query answering has polynomial data complexity, reasoning
for DL-programs is feasible in polynomial time under data complexity (where all
of KB except facts in Φ and Π is fixed).

6 Conclusion and Outlook

We have introduced a refined semantics for DL-programs to overcome counterin-
tuitive results that are caused by inconsistency that emerges when combining
rules and ontologies. For programs without DL-atoms our semantics coincides
with the standard answer set semantics of logic programs. Moreover, we defined
the property of t-stratification which guarantees that a DL-program has at most
one answer set and gave an algorithm for computing it. Furthermore, we analyzed
the computational complexity of the new semantics. The core of our approach is
the definition of a new satisfaction relation for DL-rules such that for the body
to be satisfied, additionally all its DL-atoms need to be DL-consistent.

An implementation of DL-inconsistency tolerant semantics is targeted in the
context of the EU FP7 project OntoRule, with a focus on stratified programs
and integration of F-Logic Programming [13].

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press (2003)

2. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence 172(12-13) (2008) 1495–1539

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP’88, The MIT Press (1988) 1070–1080

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: IJCAI’05,
Professional Book Center (2005) 90–96

6. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In: JELIA’04. (2004)

7. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. In: ISWC’03. (2003)

8. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a Web ontology language. J. Web Sem. 1(1) (2003) 7–26

9. Motik, B., Patel-Schneider, P.F., Parsia, B., eds.: OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. (2008) W3C Working Draft
02 December 2008.

10. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics
for description logic programs in the semantic web. In: RuleML’04. Volume 3323 of
LNCS., Springer (2004) 81–97

11. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting Conjunctive
Queries in Description Logic Programs. AMAI (1-4) (2008) 115–152

12. Krennwallner, T.: Integration of Conjunctive Queries over Description Logics into
HEX-Programs. Master’s thesis, Vienna University of Technology (2007)

13. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42(4) (1995) 741–843

