Replacements in Non-Ground Answer-Set Programminty

Thomas Eiter, Michael Fink, Hans Tompits, Patrick Traxéerd Stefan Woltran

Institut fur Informationssysteme 184/3, Technische @rsitat Wien,
FavoritenstrafRe 9-11, A-1040 Vienna, Austria
{eiter,mchael ,tonmpits,traxler,stefan}@r.tuw en. ac. at

Abstract. In this paper, we propose a formal framework for specifyiotg replacements in non-
monotonic logic programs within the answer-set prograngnparadigm. Of particular interest are
replacement schemas retaining specific notions of equigaleamong them the prominent notions of
strong and uniform equivalence, which have been introdasdtieoretical tools for program optimiza-
tion and verification. We derive some general propertiehefreplacement framework with respect
to these notions of equivalence. Moreover, we generalmdteabout particular replacement schemas
which have been established for ground programs to the mmmd case. Finally, we report a number
of complexity results which address the problem of decidiog hard it is to apply a replacement to
a given program. Our results provide an important step tdsvire development of effective optimiza-
tion methods for non-ground answer-set programming, areiggich has not been addressed much so
far.

1 Introduction

Answer-set programming (ASP) has emerged as an importaadigan for declarative problem solving,
and provides a host for many different application domainstte basis of nonmonotonic logic pro-
grams [13]. The increasing interest in ASP has raised atsmthrest in semantic comparisons of programs
in ASP, such as program equivalence [8, 4, 3] and correspmedd5, 11]. Comparisons of this kind are
a basis for program optimization, where equivalence-pvésg modifications are of primary interest; in
particular, rewriting rules which allow to perform a locddange in a program are important. Many such
rules have been proposed in a propositional setting foemfft notions of equivalence (cf., e.g., [1, 10]).

Noticeably, except for the recent work by Lin and Chen [9ynieng rules in the context of ASP
have been considered more ad hoc rather than systemataadlywere aimed at propositional programs.
However, from a practical point of view, almost all programse variables, and thus rewriting rules for this
setting are essential.

In this paper, we address this issue and consij@acement$or non-ground programs, according to
which a subset of rules in a given programay be exchanged with some other rules, possibly depending
on a condition omp. For a simple example, consider an encoding of the threariogl problem for graphs,
which represents graphs using predicatede andedge and contains (among others) the two rules

r(X) Vb(X) « edge(X,a), node(a), node(X),not g(X), 1)
r(Y)VoY)Vg(Y) «— node(Y). (2)

As our results show, Rule (1) is redundant in any proggawhich also contains Rule (2), i.e., we can
replace (1) and (2) simply by (2). Similarly, we can repla2gif p by its possible three “head-to-body”
shifts, where all atoms in the head except one are moved tbatig and negated, providing Rule (2) is
head-cycle free ip.

Our contributions are briefly summarized as follows.

— We study replacements and replacement schemas in a gemaenalfork, paying attention to different
natural types of replacements.

— We lift in this framework well-known replacement rules frahe propositional case to the setting with
variables. In particular, we focus on rules given by Brags@ix [1] as well as by Eiteet al.[2], and
generalize some of the results by Lin and Chen [9]. Howeveralso discuss some novel replacement
rules.

* This work was partially supported by the Austrian Scienced=(FWF) under project P18019.

— We describe conditions under which replacements necBsgaeserve strong equivalence [8]. We
obtain interesting results which, to some extent, subswaoent results by Ferraris [6], who showed
that strong equivalence is implicit with modular rewritsf ASP programs that preserve equivalence.

— Finally, we consider the computational complexity of afppdyspecific replacement schemas, where
we obtain bounds ranging from LOGSPACE up to PSPACE-corapésts. These results provide a
handle for deciding about efficient replacements in onlime: @ffline program optimization.

Our results extend and complement recent results aboutgrrogquivalence to the relevant application
setting. Furthermore, they provide a theoretical fourtatefor optimization techniques which in part are
used ad hoc in ASP solvers.

2 Preliminaries

Logic programs are formulated in a langua@eontaining a setd of predicate symbo)s setV of vari-
ables and a sef of constantgalso called thelomainof £). Each predicate symbol has an associarég
n > 0. An atom(over£) is an expression of form(t4, . . .,t,,), wherep € A is a predicate symbol of arity
nandt; € CUV, forl < i < n. An atom isgroundif no variable occurs in it.

A (disjunctivg rule (over L), r, is of the form

a1 V- Vap < by,..., bk, not bgi1,..., not by,)

whereay,...,a,,b1,...,b, are atoms, withh > 0, m > k > 0, andn + m > 0, and “not” de-
notesdefault negationThe headof r is the setH (r) = {a1,...,a,}, and thebodyof r is B(r) =
{b1,...,bg, not bgy1,..., not by, }. We also defind3 ™ (r) = {by,..., b} andB~(r) = {brs1, ..., bm}-

A rule r of form (3) is afactif mm = 0 andn = 1 (in which case ¢" is usually omitted). Moreover,
r is safeif each variable occurring it/ (r) U B~ (r) also occurs inB™(r), andr is groundif all atoms
occurring in it are ground.

By a program(over £) we understand a finite set of rules (ov&. We assume in what follows that
rules are always safe. The set of variables occurring in@m at(resp., a rule, a progranp) is denoted
by V, (resp.,V;., V;). Furthermore, the set of all constants occurring is called theHerbrand universe
of p, symbolicallyC,. If no constant appears im thenC, = {c}, for an arbitrary constant Moreover,
C, denotes all constants occurring in a rulérhe set of all predicates occurringgris denoted byA4,,. As
usual, theHerbrand baseB,,, of a prograny is the set of all ground atoms constructed frenandC,,.

Given aruler and a set of constants C C, we defingyrd(r, C') as the set of all rulesy obtained from
r by all possible substitutiong : V,. — C. Moreover, for any prograrm, thegrounding ofp with respect
to C'is given bygrd(p, C) = U,.¢, grd(r,C). In particulargrd(p, C,) is referred to as thgrounding ofp
simpliciter, writtengrd(p).

By aninterpretationwe understand a set of ground atoms. A ground rutesatisfiedby an interpre-
tation 7 iff H(r) NI # () wheneverB*(r) C I andB~(r) NI = (. I satisfies a ground prograpmiff
eachr € p is satisfied byl. The Gelfond-Lifschitz reducf7] of a ground programp with respect to an
interpretation/ is given by

p! ={H(r) — BY(r) |7 €p, INB~(r) = 0}.

Asetl C B, is ananswer sebf p iff I is a subset-minimal set satisfyingd(p)’. The set of all answer
sets ofp is denoted byAS(p).

In order to compare programs, we shall make use of differgnivalence relations. In particular, for
a classS of programs such thdt € S, we define, for every program p’ over £, p =° p’ iff, for each
p" eS8, AS(pUp’) = AS(p’ Up”) holds. By instantiating the parameter $etwe obtain the following
well-known notions:

— ordinary equivalencesymbolically=,, by settingS = {0};

— uniform equivalencesymbolically=,,, by settingS as the class of all finite sets of ground facts in
language’;

— strong equivalengesymbolically=,, by settingS as the set of all programs ovér

Note thatp =, p’ iff AS(p) = AS(p').

We say that a binary relatioR impliesa binary relation?’ iff R C R’. Obviously, we have that,
implies=,, and=, implies=,,.

For further details about strong and uniform equivalend¢e&éen non-ground programs, we refer to [3].

3 Replacements

Definition 1. Areplacemenis a triple o = (¢, 4, 0), where¢ is a unary predicate ranging over programs,
called theproviso ofp, andi, o are sets of rules.

We say thap is applicableto a programp, or p is g-eligible, if i C p and¢(p) holds. Theresult ofp
underp is defined as

o[p] = (p\ i) Uo,if ois applicable tap, .

Definition 2. Let = be an equivalence relation. A replacemenis =-preservingif p = [p], for any
o-eligible programp.

Clearly, any=;-preserving replacement is alsg,-preserving, and ansy,,-preserving replacement is
also=,-preserving.

Definition 3. Letp = (¢, 4, 0) be a replacement. Thep,is called

— independentf for every prograny, ¢(p) holds,
— monotoneif for all programsp, p’, ¢(p) andp C p’ implies¢(p’),
— closed under intersectioi for all programsp, p’, ¢(p) and¢(p’) impliesé(p N p’).

We sometimes identify the proviso of an independent reptece by the designated predicatép), which
is true for every program. As well, an independent replacemétit i, o) may also be identified with the
pair (i, 0). Note that any independent replacement is also monotonelaseld under intersection.

For illustration, consider a replacement= (¢, {t},?), with ¢ denoting a concrete rule, say, e.g.,
q(x1, 2, x3) — q(x1, 22, 23), andg(p) holds for any program. Then,p is applicable to each program
with ¢ € p, and, in these cases, we @&t] = p \ {t}. Indeed is an independent replacement. As we will
see later ong is also=,-preserving.

In what follows, we show some general properties for reptaar@s. In particular, the next property is
central.

Theorem 1. Let = be any equivalence relation implyirsg,. Then, any monotone replacemernis =,-
preserving, wheneveris =-preserving.

Proof. Towards a contradiction, let = (¢,4,0) be a monotone=-preserving replacement which is not
=,-preserving. From the latter, we get that there exists sprakgible programp such thatp Z; o[p].
Hence, there exists a prograshsuch thatdS(p U p') # AS(e[p] U p’). Without loss of generality, we
can assume thdp N p’) = 0. Now, sincep is monotone ang is p-eligible,p U p’ is g-eligible as well. By
hypothesisp is =-preserving, and thusU p’ = o[p U p’] holds. This implies ordinary equivalence, i.e.,
AS(pUp') = AS(e[p U p']). Sincei C pand(p N p’) =), we obtain

olpUpT=((pUp)\i)Uo=(p\i)Up' Uo=((p\i)Uo)Up = ol[p]Up.
Thus, AS(p U p’) = AS(e[p] Up'), a contradiction todS(p U p’) # AS(e[p] Up'). 0
Theorem 2. An independent replaceme(ito) is =s-preserving iffi =; o.

Proof. Let o = (4,0) be independent. The only-if direction is by definition wheaplging o to i itself.

For the if-direction, suppose thatis not=,-preserving, i.e., there exists a programwith ¢ C p such that

p £ p', wherep’ = (p\) U o. Hence, for some program AS(p Ur) # AS(p’ Ur). In other words, for
"= (p\i)Ur, we getAS(i Up") # AS(o Up”). Consequently, Z; o. O

We note that Ferraris [6] shows that in a propositional sgftfor any functionf which maps single
rulesr to setsk of rules such thatdr C Ay, the following holds: for all programg, p =, Urep f(r)
iff, for eachr, »r =, f(r). This can be concluded from Theorems 1 and 2 as follows: Eaattibn f,
that maps- to f(r) and any other rule’ to itself can be viewed as an independent replacement. Bigus,
Theorems 1 and 2,=; f(r) must hold ifp =, ... f(r) holds for allp (takep = {r}). The converse is
obvious.

TEP

4 Replacement Schemas

So far, we only considered concrete replacements guidecég fiets of rules, o. However, in general,
one wants to collect sets of replacements into a sirgglacement schemd@his can be realized as follows:

Definition 4. Areplacement schemR&, is a partial function mapping pair§, o) of programs into a unary
predicateR (i, o). The domain oRR is denoted bylom(R).

A replacemento, i, o) is aninstanceof R if (i,0) € dom(R) and¢ = R(i,0). The set of all instances
of R is denoted bynst(R).

We say thaRR is applicableto a programp, or p is R-eligible, if there exists some € inst(R) which
is applicable top. We refer to the result[p] of p under an instance € inst(R) as a result op underR.
By R*[p] we denote the set of all resultsptinderR, i.e.,

R*[p] = {elp] | 0 € inst(R)}.

With an abuse of notation, we also wrip] to refer to a result op underR.
The operatoR*[-] is used to compare replacement schemas as follows.

Definition 5. Two replacement schemaR; and R., are equipollentiff, for each programp, R3[p] =
R3[pl.
Properties for replacements are easily generalized taszhas follows:

Definition 6. A replacement schenfd is said to be=-preserving (esp.,independentmonotonginter-
section-closedif each instance oR is =-preserving(resp., independent, monotone, intersection-clhsed

Note that for an independent replacement sch&nae may identifydom(R) with inst(R). Further-
more, the results about replacements, as given by Theoramd 2, carry over in a straightforward way to
replacement schemas as well.

We are now prepared to give particular replacement schaifeastart with a generalization of a concept
considered by Brass and Dix [1] for the propositional case.

Definition 7. The replacement scheriadAUT is given as follows:

— dom(TAUT)= {({s},0) | sisarule withH(s) N B*(s) # 0};
— TAUT(i,0) = T, for every(i, o) € dom(TAUT).

The instances dfAUT are then all replacements of the fofm, {s}, ?), whereH (s) N BT (s) # 0. For
instance, lep = {s(X) « s(X), ¢(Y);q¢(X) < q(X), s(X); s(a)}. Then,TAUTp] refers either tgp’ =
{s8(X) « s(X),q(Y); s(a)} ortop” = {q(X) < q(X), s(X);s(a)}. Hence, TAUT*[p] = {p’,p"}.

As an example of a non-monotone replacement schema, we def@mleshifting LSH, extending a
similar schema introduced in the propositional case byrietel. [2]. The idea underlying local shifting
has already been sketched in the introduction. Formallyyeesl the following concepts.

The (positive dependency graphG,, of a ground programp is given by the pai(B,, E,), where
(a,b) € E, iff there exists a rule € p such that € H(r) andb € B*(r). An atoma positively depends
onb in p iff there exists a path from to b in G,,. A ground ruler is head-cycle fre¢HCF) in p iff no
distinct atoms:, b € H (r) mutually positively depend on each othepin

For an arbitrary program (not necessarily groundy, € p is HCF inp iff, for each finiteC C C and
eachr’ € grd(r,C), " is HCF ingrd(p, C).

Definition 8. The replacement scheni&H is given as follows:

— dom(LSH) consists of all pairg{r}, o.), where
1. ris arule such that, foreach : V. — C, |H(rd)| > 1, and
2. 0, = {h « B(r),not (H(r)\ h) | h € H(r)};
— for every(i, 0) € dom(LSH), LSH(i, 0) = ¢, whereg(p) holds iffr is HCF inp andi = {r}.
Note thatLSH is, for instance, not applicable to the progra(X;) Vv ¢(Xs3) « (X1, X3), sincev
mappingX; and X, to the same constantyields H (r¢) = {q(c)} with cardinality= 1.

We mention thaflL.SH is intersection-closed, but neither monotone nor indepethdeEquivalence-
preserving properties faFAUT andLSH will be provided in the next section.

! ForasetS = {as,...,an,} of atomsnot S denotes the expressiont ai, .. ., not ax.

5 Equivalence Preserving Replacement Schemas

This section collects a number of concrete replacemennsabeln particular, we generalize ideas from
propositional ASP, where such replacements have beenatplby Brass and Dix [1] and further investi-
gated and developed by several authors [10,9, 12, 2].

The section is organized as follows. First, we considgipreserving replacement schemas. Then, we
deal with monotone replacement schemas—in particular,alster our framework to the one discussed
by Lin and Chen [9]. Finally, we consider replacement sctewmlaich are not=,-preserving but=,,- or
=,-preserving.

5.1 Independent Replacement Schemas

We already gave an independent replacement schema abaowelyiBAUT. A very similar schema is
CONTRA, defined below. LikeTAUT, CONTRA has been introduced in the propositional setting by
Brass and Dix [1], and, with respect to equivalence notienalied further by Eiteet al.[2] and Osoricet

al. [10].

Definition 9. The replacement scheni@NTRA is given as follows:

— dom(CONTRA) = {({s},0) | sisarule withB*(s) N B~ (s) # 0};
— CONTRA(4,0) = T, for every(i, 0) € dom(CONTRA).

However, an alternative way to capture the natur@st/T andCONTRA is the following:
Definition 10. Schema®-TAUT and¥-CONTRA are given as follows:

— dom(¢¥-TAUT) = {({s},0) | sis arule such that, for each : V; — C, H(s?) N BT (s9) # 0};
— dom(¢¥-CONTRA) = {({s},0) | sisarule such that, foreach : V, — C, BT (s¥)N B~ (s0) # 0};
— R(i,0) = T, forevery(i,0) € dom(R), withR € {-TAUT,9-CONTRA}.

Theorem 3. The following properties hold:

1. TAUT andCONTRA are =,-preserving;
2. TAUT and9-TAUT are equipollent; and
3. CONTRA and9-CONTRA are equipollent.

We finally give four more replacement schemas which germraorresponding replacement rules
given in the literature for ground programs. In particutae ground pendants of schem@&ED~ and
NONMIN have been introduced by Brass and Dix [1], the ground versiGaIMPL is due to Wang and
Zhou [12], and that o8 UB is discussed by Lin and Chen [9].

Definition 11. The schema® € {RED~, NONMIN, S-IMPL, SUB} are given as follows:

— dom(R) consists of all pairg{r, s}, {s}), wherer, s are rules, such that
e forR =RED™, H(s) C B~ (r) andB(s) =), and
e for R € {NONMIN, S-IMPL, SUB}, there exists} : V; — V,. U C, such thatB™ (s9) C B (r)
and
* for R = NONMIN, H(sv) C H(r) andB~(s¥) C B~ (r),
x for R = S-IMPL, there is somed C B~ (r) with H(s¥) C H(r) U A and B~ (s) C
B~ (r)\ A, and
x for R = SUB, H(s¥) C H(r)U B~ (r) and B~ (s¥) C B~ (r); and
— R(i,0) = T, for every(i, 0) € dom(R).

Observe that the safety condition of rules implies RRAID~ is only applicable in caseis a ground
disjunctive fact. This is the reason why, in contrast to ttheebthree schemas, there is no need¥ar the
definition forRED .

The four schemas introduced above stand in the followiragimiships to each other:

— if RED~ or NONMIN is applicable to a program thenS-IMPL is applicable tg, and
— if S-IMPL is applicable to a program thenSUB is applicable tg.

Hence, the schem&UB the most unconstrained among the four, being applicablenexes any of the
other three is.

Theorem 4. The replacement schemB&D~, NONMIN, S-IMPL, andSUB are all =;-preserving.

Like for TAUT andCONTRA, also the above replacement schemas can be defined in aratlter
way, explicitly referring to all groundings of the rules oived. We leave a further discussion of this point
to a full version of this paper.

5.2 Monotone Replacement Schemas

For monotone replacement schemas, there is an interesieipn to independent replacement schemas
as follows:

Theorem 5. Any replacement schema which is monotone, closed undeséat®on, and=,-preserving is
equipollent to an independent replacement schema.

Proof. Let R be a replacement schema which is monotone, closed undesdant®n, and=,-preserving.
Consider some < inst(R) with ¢ = (¢, 1, 0). Sincep is monotone and closed under intersection, there
exists a unigue programg, such thaty(p) holds for eachy 2 py but¢(p’) does not hold for any’ C py.
Obviously,o’ = (T,iUpg,0U (po \ 7)) then satisfiep[s] = ¢[s] for every prograns. It follows that the
replacement schenfd’, defined by settinglom(R’) = {(i U pg,0 U (po \ 7)) | (i,0) € dom(R)} and
R'(i,0) = T, for every(i, 0) € dom(R’), is equipollent tdR. Moreover,R’ is clearly independent. O

In recent work, Lin and Chen [9] captured certain classefrofgly equivalent propositional programs
by considering problems of the following form:

Given rulesry, ..., g, Uty ..y Um, Uty vy On, 1IS{r1, ..., g, U, . . ., um } Strongly equivalent to
{1,y T, V1, o, U }?

Such a problem is referred to askan-n-problem The main focus of Lin and Chen’s work is to find
computationally effectivejecessarandsufficientconditions, for smalk, m, n, making ak-m-n-problem
true. In general, any condition that guarantees a positisevar to a&-m-n-problem, for fixedk, m, andn,
obviously yields a monotone replacement schema. Morethesconditions given by Lin and Chen [9] for
particular problem classes additionally enforce that threesponding schema is closed under intersection.
In fact, Theorem 5 constitutes a generalization of obsematmade Lin and Chen [9].

We next deal with properties for 0-1-0-problems. To this,emel introduce the following replacement
schemas.

Definition 12. Schema$.Cy-1-9 and9-LCy-1-¢ are given as follows:

— dom(LCo-1-0) = {({s},0) | sisarule withB*(s) N (H(s) UB~(s)) # 0};
— dom(9-LCo-1-0) = {({s},0) | sisarulesuch that, foreach : V;, — C, BT(s¥) N (H(s9) U

B~ (s9)) #0};
— R(i,0) = T, for every(i, 0) € dom(R), with R € {LCp-1-9, 9-LCp-1-0}-

Obviously, the syntactic criterion dfCy-1-9 combines, in a sense, the conditions iokUT and
CONTRA. This is made precise as follows:

Theorem 6. LCo-1-0*[p] = TAUT*[p] U CONTRA*[p], for any progranyp.
In view of this and previous results, the next theorem corhes aurprise:
Theorem 7. L.Cp-1-9 IS =,-preserving. Furthermord,Cy-1-¢ is equipollent tad-L.Cyp-1-¢.

As mentioned above, Lin and Chen [9] are concerned with ¢mmdi makingk-m-n problems true,
for smallk, m, n. The following proposition rephrases a result of that endea

Proposition 1 ([9]). For any ground ruler, {r} =, (iff LCy-1-9 is applicable to{r}.

This result can be lifted to the non-ground case, yieldingrgagtic criterion when a single rule is
redundant in a program.

Theorem 8. For any ruler, {r} =, 0 iff LCy-1-¢ is applicable to{r}.

Finally, we remark that the replacement sche§ti@, introduced in the previous section, is the gener-
alization of another condition given by Lin and Chen [9] foopositional programs.

5.3 Non-Monotone Replacement Schemas
Theorem 9. LSH is =,,-preserving, but not=,-preserving.

Indeed, the fact thdtSH is not=,-preserving already follows from an analogous result inttegosi-
tional case [2]. However, to illustrate this property, ddes the following example in the non-ground set-
ting: Takep as consisting of the single rute= ¢(X) v r(X) < s(X,Y). Clearly,r is HCF inp, and thus
LSH is applicable t@. However, fopp’ = LSH[p], we havep #, p’, which can be seen by considering, e.g.,
P ={qY) — r(Y);r(X) « q(X); s(a,b)}, for which we get thatdS(p U p") = {s(a,b),q(a),r(a)}
while AS(p’ Up"”) = 0.

We next introduce &, -preserving replacement schema, which, to the best of cawlange, has not
been considered before, even in a propositional settinge Mat in the definition below is required to
be a (bijective) renaming rather than a substitution.

Definition 13. The replacement scherhi®LD is given as follows:

— dom(FOLD) is the set of all pair{{r, s}, {t}), wherer, s, t are rules and there exists a renaming
d and an atomu € B~ (rd) N BT (s) such thatd (rd) = H(s) = H(t) and (B(rd) \ {not a}) =
(B(s) \ {a}) = B(t);

— for every(i, 0) € dom(FOLD), FOLD(i,0) = ¢, whereg(p) holds iff, for each head atoinin p and
eachd, : V, — Candd, : V, — C, ad, # by, with a as above.

Theorem 10. FOLD is =, -preserving, but not,-preserving.

For illustration, considep = {¢(X,X) <« r(X),not s(X);q(Y,Y) « =(Y),s(Y)}. We can apply
FOLD to p since no atoms(-) occurs in a head gf. The result of the replacement;is = FOLD[p] =
{q(Y,Y) < r(Y)}. By the theorem above, =, p'. For instance, adding = {r(a)} yields AS(p U
t) = AS(p' Ut) = {r(a),q(a,a)}. On the other hand, adding = {r(a), s(X) <« ¢(X,Y)} results in
AS(put’) = 0, while AS(p' Ut') = {r(a), s(a), ¢(a, a)}. This shows thaFOLD is not=,-preserving; a
corresponding counterexample can also be constructetiégrropositional setting as well. Furthermore,
FOLD is applicable to the programu ¢ as well, but it is not applicable toU ¢'. Sincet’ D ¢, we observe
thatFOLD is not monotone.

Finally, we briefly discuss a replacement schema which jsreserving but not=,,-preserving. For
the propositional case, this replacement schema was finstaered by Brass and Dix [1].

Definition 14. The replacement scher®ED™ is given as follows:

— dom(RED™) is the set of all pairs({r},{t}), wherer, t are rules such tha#/(r) = H(t) and
B(r) = B(t) U{not a};

— for every(i, 0) € dom(RED™), RED* (i, 0) = ¢, whereg(p) holds iff, for each head atomin p and
eachd, : V, — Candd, : V, — C, ad, # by, wherea is an atom such thaB (i) = B(o) U{not a}.

Note thatRED™ is, to some extent, a simplification 8OLD, where the second rule, of i having
a positive in its body is not mandatory anymore. As a consecgigiie equivalence notion preserved by
REDT is weaker.

Theorem 11. RED™ is =,-preserving, but not=,,-preserving.

As in the case of.SH, the fact thaRED™ is not=,-preserving follows immediately from a corre-
sponding result in the propositional case [2].

6 Complexity of Applicability

In this section, we deal with the computational complexitthe applicability problenfor a given replace-
ment schem&, which is the task of determining wheth&ris applicable to a given program.
Ouir first result concerns the schemiasUT, CONTRA, andRED .

Theorem 12. The applicability problem foR € {TAUT, CONTRA,RED™ } is in LOGSPACE.

The independent replacement schemas involving two rulbghmve considered, are more complex,
however.

Theorem 13. The applicability problem foR € {NONMIN, S-IMPL, SUB} is NP-completeNP-hard-
ness holds even if the arities of the predicates in the givegram are bounded by a constant.

We now turn to non-monotone replacements.

Theorem 14. The applicability problem fol.SH is PSPACE-complete. If each predicate in the given
program has its arity bounded by a constant, the probleili®) GSPACE-complete.

Informally, the difficult part is solving the HCF test, whielmounts to test reachability in an implicitly
represented graph, which is PSPACE-complete. Note thtiteipractical relevant setting of programs hav-
ing bounded predicate aritietcSH-applicability can be tested INLOGSPACE, and thus in polynomial
time. Here, the implicit graph can be effectively constedactising logarithmic workspace.

While LSH is computationally involving in the general case, the oth& non-monotone replacement
schemas turn out to be easier.

Theorem 15. The applicability problem foFFOLD is polynomially equivalentunder Turing-reductions
to the graph isomorphism problem.

Here, computational hardness is located in the check whetlverules in the given program yield an
instance ofFOLD, rather than the test involving the proviso. Indeed, thébfenm of finding a bijective
renaming allows for a representation of graph isomorphism alreadyeifrestrict ourselves to programs
over binary atoms. In turn, we can show tli@LD-applicability can be decided by a polynomial number
of tests for graph isomorphism. Graph isomorphism i&Nin but it is not known to beNP-complete or
belonging toP.

Our final result provides a tractable case.

Theorem 16. The applicability problem foREDTis LOGSPACE-complete.

7 Conclusion

Our results on replacements provide a basis for progranrmagation by rewriting in the practicably im-
portant setting of non-ground programs. While many remgitiules have been proposed for propositional
programs, generalizations to the non-ground case haveshbegn considered in an answer-set program-
ming setting. We have addressed this issue consideringpsadggams. However, safety is not necessarily
required and, in many cases, unsafe rules can be taken iobo=tcf their replacement does not change
the active domain of the program. We leave further detailthese issues for future work.

Applying replacements for program optimization requides program to be scanned for applicable
replacements. Depending on the considered replacemesrhsglthis test requires different computational
effort, ranging from tractable cases upRSPACE.

An implementation of the applicability tests for some of thest general replacement schemas which
we have presented is currently under development, using$iesolver DLV and Perl. Note that for all
schemas considered in this paper, these tests are cheapeh¢éhcomplexity of computing an answer set
(which is NEXP'FP-hard in general for disjunctive programs)—in fact, witte taxception of.SH, these
tests aradrastically cheaper. Thus, the schemas might be considered alsmfioie optimizatiorand not
only for staticoffline optimization

References

10.

11.

12.

13.

S. Brass and J. Dix. Semantics of (Disjunctive) Logic Paiots Based on Partial Evaluatiodournal of Logic
Programming 38(3):167—213, 1999.

T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifyigpgic Programs Under Uniform and Strong Equiva-
lence. InProceedings of the 7th International Conference on LogimgPamming and Nonmonotonic Reasoning
(LPNMR’04), volume 2923 oL NCS pages 87-99. Springer Verlag, 2004.

. T. Eiter, M. Fink, H. Tompits, and S. Woltran. Strong andiform Equivalence in Answer-Set Programming:

Characterizations and Complexity Results for the Non-@doGase. IrProceedings of the 20th National Confer-
ence on Atrtificial Intelligenc€AAAI'05), pages 695-700. AAAI Press, 2005.

. T. Eiter, M. Fink, and S. Woltran. Semantical Charactgians and Complexity of Equivalences in Stable Logic

Programming. Technical Report INFSYS RR-1843-05-01,itunstiir Informationssysteme, Technische Univer-
sitat Wien, Austria, 2005. Accepted for publicationA@M Transactions on Computational Logic

. T. Eiter, H. Tompits, and S. Woltran. On Solution Corresgences in Answer Set Programming.Proceedings

of the 19th International Joint Conference on Artificialétigence(IJCAI'05), pages 97-102, 2005.

. P. Ferraris. On Modular Translations and Strong Equigde InProceedings of the 8th International Conference

on Logic Programming and Nonmonotonic ReasorfltBNMR’'05, volume 3552 of NCS pages 79-91. Springer
Verlag, 2005.

. M. Gelfond and V. Lifschitz. Classical Negation in LogiooBrams and Disjunctive Databas@¢ew Generation

Computing 9:365-385, 1991.

. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Eqleéva Logic ProgramsACM Transactions on Computa-

tional Logic 2(4):526-541, 2001.

. F. Lin and Y. Chen. Discovering Classes of Strongly EdeivaLogic Programs. IfProceedings of the 19th

International Joint Conference on Artificial Intelligen¢dCAI'05), pages 516-521, 2005.

M. Osorio, J. A. Navarro, and J. Arrazola. Equivalenc@mswer Set Programming. Rroceedings of the 11th
International Workshop on Logic Based Program Synthesis BransformationLOPSTR’0}, Selected Papers
volume 2372 oLNCS pages 57—-75. Springer Verlag, 2001.

D. Pearce and A. Valverde. Synonymous Theories in An&etrProgramming and Equilibrium Logic. In
Proceedings of the 16th European Conference on Atrtificitdlligence(ECAI'04), pages 388-392. 10S Press,
2004.

K. Wang and L. Zhou. Comparisons and Computation of Wéelhded Semantics for Disjunctive Logic Programs.
ACM Transactions on Computational Logi&(2):295-327, 2005.

S. Woltran (ed.). Answer Set Programming: Model Appi@as and Proofs-of-Concept. Technical Report WP5,
Working Group on Answer Set Programming (WASP, IST-FET22687004). Available aht t p: / / wwwv. Kr .
tuwi en. ac. at/ proj ects/ WASP/ report. htnl .

