
Characterizing Notions of Strong Equivalence for Logic
Programs with Ordered Disjunctions∗

Wolfgang Faber
Department of Mathematics

University of Calabria
Via P. Bucci, cubo 30B

87036 Rende (CS), Italy

wf@wfaber.com

Hans Tompits
Institute for Information

Systems 184/3
Technische Universität Wien

Favoritenstrasse 9-11
A-1040 Vienna, Austria

tompits@kr.tuwien.ac.at

Stefan Woltran
Institute for Information

Systems 184/2
Technische Universität Wien

Favoritenstrasse 9-11
A-1040 Vienna, Austria

woltran@dbai.tuwien.ac.at

ABSTRACT
Ordered disjunctions have recently been introduced as a
simple, yet expressive approach for representing preferen-
tial knowledge by means of logic programs. The semantics
for the resulting language is based on the answer-set se-
mantics, but comes in different flavors, depending on the
particular notion of preference associated to the disjunction
connective. While in standard answer-set programming, the
question of when a program is to be considered equivalent
to another received increasing attention in recent years, this
problem has not been addressed for programs with ordered
disjunctions so far. In this paper, we discuss the concept
of strong equivalence in the latter setting. We introduce
different versions of strong equivalence for programs with
ordered disjunctions and provide model-theoretic character-
izations, extending well-known ones for strong equivalence
between ordinary logic programs. Furthermore, we discuss
interesting relations between the proposed notions.

1. INTRODUCTION
During the last decade, answer-set programming (ASP)

has become an increasingly acknowledged tool for declara-
tive knowledge representation and reasoning [6, 8, 9, 1]. A
main advantage of ASP is that it is based on solid theo-
retical foundations while being able to model commonsense
reasoning in an arguably satisfactory way. The availabil-
ity of efficient solvers has furthermore stimulated its use in
practical applications in recent years. This development had
quite some implications on ASP research. For example, in-
creasingly large applications require features for modular
programming. Another requirement is the fact that in ap-
plications, ASP code is often generated automatically by

∗This work was partially supported by the Austrian Science
Fund (FWF) under grant P18019 and by M.I.U.R. within
project “Sistemi basati sulla logica per la rappresentazione
di conoscenza: estensioni e tecniche di ottimizzazione.”.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

so-called frontends, calling for optimization methods which
remove redundancies, as also found in database query op-
timizers. For these purposes, the fairly recently suggested
notion of strong equivalence for ASP [7, 10] can be used. In-
tuitively, two programs P and Q are strongly equivalent iff,
for any program R, P ∪R and Q∪R have the same answer
sets. To put it another way, two ASP programs are strongly
equivalent if they can be used interchangeably in any con-
text (accordingly, the program R above is also referred to
as the context program). This gives a handle on showing
the equivalence of ASP modules. Moreover, if a program is
strongly equivalent to a subprogram of itself, then one can
always use the subprogram instead of the original program,
yielding potential for optimization.

Among the different lines of ASP research, many exten-
sions of the basic formalism have been proposed—an impor-
tant one is the modelling of preferences in ASP [4]. Strongly
rooted in the research of nonmonotonic formalisms, the abil-
ity to specify preferences is acknowledged to be particularly
beneficial to ASP, since they constitute a very natural and
effective way of resolving indeterminate solutions. A fairly
recent means of representing preferences is ASP with ordered
disjunctions [2, 3]. The basic idea is to augment the syntax
by a designated operator “×” to form ordered disjunctions.
Programs of this form (called logic programs with ordered
disjunctions, or LPODs) can be evaluated in a standard way
or with respect to different preferential semantics which take
the occurrences of this new operator into account.

In this paper, we examine how the inclusion of preferences
in the form of ordered disjunctions affects equivalence, and
in particular strong equivalence of ASP. To this end, we in-
troduce different notions of strong equivalence for LPODs.
The distinguishing aspects of these notions are (i) whether
the context programs are arbitrary LPODs or just ordinary
programs, i.e., whether the context may change preferen-
tial information, and (ii) whether the semantics is taken in
terms of standard answer sets or preferred answer sets. Fol-
lowing Brewka et al. [3], we study three different preference
strategies, viz. Pareto-, inclusion-, and cardinality-based re-
lations (identified using the letters p, i, and c, respectively).
More formally, we introduce the following relations: for all
LPODs P and Q,

• P ≡s Q iff the standard answer sets of P and Q coin-
cide under any extension by normal programs;

• P ≡s,× Q iff the standard answer sets of P and Q

coincide under any extension by LPODs;

• P ≡κs Q iff the κ-preferred answer sets of P and Q
coincide under any extension by normal programs (for
κ ∈ {p, i, c}); and

• P ≡κs,× Q iff the κ-preferred answer sets of P and
Q coincide under any extension by LPODs (for κ ∈
{p, i, c}).

For all of these notions we provide novel model-theoretic
characterizations and we discuss relations among them. Fur-
thermore, the notions coincide for ordinary programs, so
they properly generalize the usual concept of strong equiva-
lence. Interestingly, the two relations ≡s and ≡s,× coincide,
and they can be characterized in a similar fashion as strong
equivalence for ordinary programs. That is to say, this char-
acterization uses a generalization of the concept of an SE-
model [10], based on a novel notion of a reduct, extending
the usual reduct as introduced by Gelfond and Lifschitz [6].

Taking a preferential point of view, the arguably most
interesting relation among the ones we study is ≡κs,× (for
κ ∈ {p, i, c}) but the others have their importance too. In-
deed, the model-theoretic characterization for ≡κs,× involves,
besides specific conditions on the models of the involved pro-
grams, the relation ≡κs as well.

2. PRELIMINARIES
A logic program with ordered disjunction (LPOD) is a fi-

nite set of rules of the form

p1 × · · · × pk ← pk+1, . . . , pm,not pm+1, . . . ,not pn, (1)

where 1 ≤ k ≤ m ≤ n, and each pi (1 ≤ i ≤ n) is an atom.1

A rule of above form is normal if k = 1 and basic if k = 1 and
m = n. We use head(r) = {p1, . . . , pk} to denote the head
of r and body(r) = {pk+1, . . . , pm, not pm+1, . . . ,not pn} to
denote the the body of r. As well, body+(r) stands for the set
{pk+1, . . . , pm}, and body−(r) for {pm+1, . . . , pn}, We will
also write a rule r of form (1) as p1 × · · · × pk ← body(r)
whenever convenient. The j-th option (1 ≤ j ≤ k) of a rule
of the form (1) is defined as

r[j] = pj ← pk+1, . . . , pm,not pm+1, . . . ,not pn,

not p1, . . . ,not pj−1.

For a program P , we define atoms(P) =
S
r∈P head(r) ∪

body+(r)∪body−(r) and we say that a program P is over V
if atoms(P) ⊆ V . A program is called normal, or simply a
logic program (LP), if each rule in it is normal. A program
is called basic if each rule in it is basic. A split program of
an LPOD is obtained by replacing each rule by one of its
options. Clearly any split program is normal, and a normal
program is its unique split program. The set of all split
programs of an LPOD P is denoted as SP(P).

Towards the semantics of LPODs, we first define a notion
of satisfaction for LPODs. Then, we recall the notion of
an answer set of a normal program. The answer sets of an
LPOD will be defined over the answer sets of its split pro-
grams. Finally, we introduce different types of preferences
between answer sets of LPODs.

An interpretation I, i.e., a set of atoms, satisfies a rule r,
in symbols I |= r, iff I ∩head(r) 6= ∅ whenever body+(r) ⊆ I
1In contrast to Brewka et al. [2, 3], we do not consider strong
negation for reasons of simplicity.

and I ∩ body−(r) = ∅ jointly hold. An interpretation I
satisfies an LPOD P , in symbols I |= P , iff I |= r, for each
r ∈ P . I is then also called a (classical) model of P . Note
that the concept of satisfaction is the same for programs
with (unordered) disjunction.

The reduct [6] of a normal program P relative to an in-
terpretation I is defined by P I = {head(r) ← body+(r) |
r ∈ P, body−(r) ∩ I = ∅}. The smallest interpretation sat-
isfying a basic program P is denoted by Cn(P). Then, an
interpretation I is an answer set of a normal program P if
Cn(P I) = I. The answer sets of an LPOD P are defined
as the collection of all answer sets of its split programs.2

We use AS(P) for denoting the set of all answer sets of P .
Hence, AS(P) = {I | ∃P ′ ∈ SP(P) : I ∈ AS(P ′)}.

Towards the definition of the preference relations, we in-
troduce a more fine-grained concept of satisfaction: Let I
be an interpretation and r a rule of form (1). Then, I sat-
isfies r to degree j, in symbols I |=j r, if I |= r[j] and for
all 1 ≤ i < j, I 6|= r[i]. Note that I |=1 r also holds if the
body of r is not satisfied by I. Intuitively, satisfying a rule
to degree 1 means that there is “no better way” to satisfy it.
We also use dI(r) to denote the degree to which r is satisfied
under I. Based on this concept we can identify certain parts
of a program with respect to the degree they are satisfied
by PI [k] = {r ∈ P | I |=k r}.

We now define three types of preference relations, which
are defined on models of programs. Let I, J be (classical)
models of a program P . Then,3

• I >cP J iff there is a k such that |PI [k]| > |PJ [k]|, and
for all j < k, |PI [j]| = |PJ [j]|,

• I >iP J iff there is a k such that PI [k] ⊃ PJ [k], and
for all j < k, PI [j] = PJ [j],

• I >pP J iff there is a rule r ∈ P such that dI(r) < dJ(r),
and for no r ∈ P , dI(r) > dJ(r).

Finally, an interpretation I is a κ-preferred answer set of
an LPOD P (for κ ∈ {p, i, c}) iff I ∈ AS(P) and there is no
J ∈ AS(P) such that J >κP I. The set of κ-preferred answer
sets of an LPOD P is denoted by ASκ(P).

The relation >cP is the cardinality-based preference rela-
tion, >iP is the inclusion-based preference relation, and>pP is
the Pareto-based preference relation. We have, for any pro-
gram P , that I >pP J implies I >iP J , and I >iP J implies
I >cP J . Hence, AS c(P) ⊆ AS i(P) ⊆ ASp(P) ⊆ AS(P).
There are programs for which all subset-relations are proper.

Example 1. Consider the following program P (we label
rules with ordered disjunctions for easier reference):

a← not b,not c; b← not a,not c; c← not a,not b;
ra : b× d← a; rb : c× e← a; z ← b; z ← c;
rc : a× b× c : −z; rd : c× b : −z.

The answer sets of P are A1 = {a, d, e}, A2 = {b, z}, and

2Brewka et al. [3] provide an alternative definition of answer
sets for LPODs based on a reduct. We shall introduce a
different notion of a reduct for our purposes later, however.
3Brewka et al. [3] define these relations on answer sets rather
than on models; however, this is too restrictive in our con-
text where compared programs are inherently incomplete.

A3 = {c, z}, with the following rule-satisfaction degrees:

1 2 3
A1 P \ {ra, rb} {ra, rb}
A2 P \ {rc, rd} {rc, rd}
A3 P \ {rc} {rc}

We have that A3 >cP A2 and A3 >cP A1, and therefore
AS c(P) = {A3}. We also have A3 >

i
P A2, but A3 6>iP A1,

hence AS i(P) = {A3, A1}. But then we have A3 6>pP A2

(dA3(rd) < dA2(rd), but dA3(rc) > dA2(rc)) and also A3 6>pP
A1, therefore ASp(P) = {A3, A1, A2}.

We conclude this section by reviewing strong equivalence
between normal programs. Two LPs P1 and P2 are strongly
equivalent [7], denoted P1 ≡s P2, iff, for any LP P , AS(P1∪
P) = AS(P2 ∪ P). As shown by Lifschitz, Pearce, and
Valverde [7], strong equivalence actually amounts to equiv-
alence in the non-classical logic of here-and-there; this char-
acterization was adapted to logic-programming terms by
Turner [10] as follows: Let P be an LP and let X,Y be
sets of atoms such that X ⊆ Y . The pair (X,Y) is an SE-
model of P if Y |= P and X |= PY . By SE(P) we denote
the set of all SE-models of P . Then, for any LPs P1 and P2,
P1 ≡s P2 iff SE(P1) = SE(P2) [10].

Our goal is to define suitable extensions of strong equiv-
alence for LPODs, and to develop similar model-theoretic
characterizations. This will be done in terms of a novel ex-
tension of the notion of a reduct as defined for ordinary LPs,
which is discussed next.

3. DEFINING A REDUCT FOR LPODS
As noted above, we now provide a definition of a reduct

which properly extends the usual one due to Gelfond and
Lifschitz [6], and which allows us to characterize answer sets
of LPODS just in the same way as answer sets of LPs.

Definition 1. Let P be an LPOD and I an interpreta-
tion. Then,

P I={pj←body+(r) | r ∈ P, I |=j r, I ∩ body−(r) = ∅}∪
{pk←body+(r) | r ∈ P, I 6|= r, head(r)={p1, . . . , pk}}.

In other words, for a rule r = p1 × · · · × pk ← body(r), we
take the positive part, pj ← body+(r), of the j-th option
of r to build the reduct P I , in case I ∩ body−(r) = ∅ and
r is satisfied to degree j by I, and if r is not satisfied by
I (note that I ∩ body−(r) = ∅ thus holds as well), we take
the positive part of the last option, i.e., pk ← body+(r).
Now, for a normal program P this definition coincides with
the usual notion of a reduct, since, for any normal rule r,
we have that r = r[1], and thus I |= r iff I |=1 r, hence
r ∈ P I iff I ∩ body−(r) ∩ I = ∅. Thus, P I as defined in
the background for LPs is properly generalized to LPODs
by Definition 1. The difference to the reduct P I× as defined
by Brewka et al. [3] is that rules r from P with I 6|= r, are
not necessarily present in P I×.

We need two further technical lemmas.

Lemma 1. For each LPOD P and each interpretation I,
I |= P iff I |= P I .

Proof. (⇒) From I |= P , we have, for each r ∈ P , I |= r,
and thus I |=rj r, for some degree rj . Thus, for each r ∈ P ,

we have either I ∩ body−(r) 6= ∅ or I |= pj ← body+(r), and
I |= P I follows.

(⇐) If I 6|= P , then there exists an r ∈ P such that
body+(r) ⊆ I and I∩(head(r)∪body−(r)) = ∅. This implies
body+(r) ⊆ I and I ∩ head(r) = ∅. Hence, for any pi ∈
head(r), I 6|= pi ← body+(r). This holds, in particular, for
the last head-element pk. Since pk ← body+(r) is contained
in P I , we get I 6|= P I .

Lemma 2. Let P be an LPOD, S ∈ SP(P), I an inter-
pretation. Then, I |= S implies I |= P .

Proof. Suppose I 6|= P . Hence, there exists a rule r ∈ P
such that body+(r) ⊆ I and I ∩ (head(r) ∪ body−(r)) = ∅.
Since S ∈ SP(P), the j-th option of r, r[j], is contained in S,
for some j. Since body+(r[j]) = body+(r), and (head(r[j])∪
body−(r[j])) ⊆ (head(r)∪ body−(r)), we get body+(r[j]) ⊆ I
and I ∩ (head(r[j]) ∪ body−(r[j])) = ∅, thus I 6|= S.

Theorem 3. Let P be an LPOD and I an interpretation.
Then, I ∈ AS(P) iff I = Cn(P I).

Proof. (⇐) Assume I = Cn(P I), and consider the pro-
gram S which contains, for each rule r ∈ P of the form
p1 × · · · × pk ← body(r), the j-th option, r[j], of r if I |=j r
for some 1 ≤ j ≤ k, and the k-th option of r otherwise. By
construction, S ∈ SP(P) and P I = SI . Since I = Cn(P I)
by hypothesis, we get I = Cn(SI), and thus S ∈ AS(P).

(⇒) From I ∈ AS(P) we get that there exists a split
program S ∈ SP(P) such that I = Cn(SI). We show that
I = Cn(P I). From I |= SI , and since S is an LP, we know
I |= S. By Lemma 2, I |= P , and thus, by Lemma 1,
we get I |= P I . It remains to show that for each J ⊂ I,
J 6|= P I . So, fix some J ⊂ I. We know J 6|= SI , i.e.
J 6|= {r[j]}I , for some j-th option of a rule r ∈ P . Let r be
of form p1 × · · · × pk ← body(r). From J 6|= {r[j]}I , we get
I ∩ body−(r) = ∅, I ∩{p1, . . . , pj−1} = ∅, body+(r) ⊆ J , and
pj /∈ J . But pj ∈ I has to hold, otherwise I 6|= S. But then,
we have body+(r) ⊆ I, since J ⊂ I, I ∩ body−(r) = ∅, pj ∈ I
and I ∩{p1, . . . , pj−1} = ∅. Therefore, by definition, I |=j r,
and since I ∩ body−(r) = ∅, pj ← body+(r) is contained in
P I . Hence, J 6|= P I .

4. STRONG EQUIVALENCE FOR LPODS
The different semantics for LPODs motivate the definition

of various notions for strong equivalence. First, let us intro-
duce the straightforward generalizations of strong equiva-
lence, which refer to (standard) answer sets of LPODs. How-
ever, we distinguish between the actual form of the context
which either allows to contain all LPODs or disallows pro-
grams with ordered disjunction.

To start with, let us call two LPODs, P1 and P2, equiva-
lent, denoted P1 ≡ P2, iff AS(P1) = AS(P2). Strong pen-
dants of this notion are as follows:

Definition 2. Let P and Q be two LPODs. Then, P and
Q are LPOD-strongly equivalent (resp., LP-strongly equiv-
alent), symbolically P ≡s,× Q (resp,. P ≡s Q), iff, for any
LPOD (resp., LP) R, AS(P ∪R) = AS(Q ∪R).

In order to characterize these strong-equivalence notions
between LPODs, we define the notion of an SE-model for
LPODs in the same way as done for LPs, but using our new
notion of a reduct.

Definition 3. A pair (X,Y) of interpretations with X ⊆
Y is an SE-model of an LPOD P iff X |= PY and Y |=
P . The set of all SE-models of an LPOD P is denoted by
SE(P).

The next result shows that the extended concept of an
SE-model characterizes both LPOD- and LP-strong equiva-
lence. Thus, the latter two notions coincide.

Theorem 4. The following statements are equivalent, for
all LPODs P,Q: (1) P ≡s,× Q; (2) P ≡s Q; (3) SE(P) =
SE(Q).

Proof. The proof proceeds basically along the lines of
the corresponding proof by Turner [10]. Recall that follow-
ing Theorem 3, for any LPOD P , I ∈ AS(P) iff I |= P and
no J ⊂ I satisfies J |= P I .

(1) ⇒ (2): Follows by definition.
(2) ⇒ (3): Suppose, without loss of generality, (X,Y) ∈

SE(P) \ SE(Q).
Case 1: X = Y . Then, Y |= P and Y 6|= Q. Clearly,

Y ∈ AS(P ∪{y ←| y ∈ Y }) but Y /∈ AS(Q∪{y ←| y ∈ Y }).
Case 2: X ⊂ Y and (Y, Y) ∈ SE(P) ∩ SE(Q). Take

R = {x ← | x ∈ X} ∪ {p ← q | p, q ∈ Y \ X}. Then,
Y |= Q∪R, and, for each Z ⊂ Y with X 6= Z, Z 6|= RY = R.
Since X 6|= QY , by hypothesis (X,Y) /∈ SE(Q), we obtain
that no U ⊂ Y satisfies U |= (Q ∪ R)Y . Consequently,
Y ∈ AS(Q∪R). On the other hand, X |= PY by hypothesis,
and X |= RY is easily checked, since R = RY . But then,
X |= PY ∪RY = (P ∪R)Y . Hence, Y /∈ AS(P ∪R). In both
cases we used an LP R to show AS(P ∪ R) 6= AS(Q ∪ R),
hence P 6≡s Q.

(3) ⇒ (1). Suppose there exists an LPOD R such that
AS(P ∪R) 6= AS(Q∪R). Without loss of generality, assume
that Y ∈ AS(P∪R)\AS(Q∪R). We get Y |= P and Y |= R,
and thus have two cases for Y /∈ AS(Q ∪R). First, Y 6|= Q.
We immediately get (Y, Y) /∈ SE(Q) and are done, since
(Y, Y) ∈ SE(P) holds in view of Y |= P . So suppose Y |= Q
but some X ⊂ Y satisfies (Q∪R)Y . Then, X |= QY and we
obtain (X,Y) ∈ SE(Q). On the other hand, since X |= RY ,
we have X 6|= PY , otherwise X |= PY ∪ RY = (P ∪ R)Y ,
which contradicts the assumption Y ∈ AS(P ∪ R). From
X 6|= PY , we get (X,Y) /∈ SE(P).

5. STRONG EQUIVALENCE FOR
PREFERRED ANSWER SETS

We continue with strong-equivalence notions which take
care about preferences among answer sets. Once again, we
provide two different notions depending whether the con-
text allows for ordered disjunctions or restricts to normal
programs.

Like in the previous section, let us first call two LPODs
P1 and P2 κ-equivalent, denoted P1 ≡κ P2, iff ASκ(P1) =
ASκ(P2).

Definition 4. Let P and Q be LPODs and κ ∈ {p, i, c}.
Then, P and Q are κ-LPOD-strongly equivalent (resp., κ-
LP-strongly equivalent), in symbols P ≡κs,× Q (resp,. P ≡κs
Q), iff, for any LPOD (resp., LP) R, ASκ(P∪R) = ASκ(Q∪
R).

5.1 Characterizations for LPs
We first address κ-LP-strong equivalence, for κ ∈ {p, i, c}.

Before turning to the characterizations, we need two tech-
nical lemmas.

Lemma 5. Let Y,Z be models of an LPOD P over atoms

V and let

R†Y,Z = {a← not b; b← not a} ∪
{y ← a | y ∈ Y } ∪ {z ← b | z ∈ Z} ∪
{w ← a, y′,not w | y′ ∈ V \ Y } ∪
{w ← b, z′,not w | z′ ∈ V \ Z},

where a, b, w are new atoms. Then, AS(P ∪ R†Y,Z) = {Y ∪
{a}, Z ∪ {b}}.

The proof is straightforward. Note, however, that the
constraint-like rules using w are necessary, since the pre-
ferred answer sets of LPODs do not satisfy the anti-chain
property, in general.

Lemma 6. Let P be an LPOD, R an LP, κ ∈ {p, i, c},
and Y,Z models of P ∪R. Then, Y >κP Z iff Y >κP∪R Z.

Proof. Since R is an LP, for every r ∈ R, we obtain
dY (r) = dZ(r) = 1 and RY [1] = RZ [1]. Moreover, for any
k > 1, it holds that RY [k] = RZ [k] = 0, and hence (P ∪
R)Y [k] = PY [k] and (P ∪R)Z [k] = PZ [k].

It follows that

|(P ∪R)Y [1]| = |PY [1]|+ |RY [1]|

and

|(P ∪R)Z [1]| = |PZ [1]|+ |RZ [1]|,

and since RY [1] = RZ [1],

|(P ∪R)Y [1]| > |(P ∪R)Z [1]| iff |PY [1]| > |PZ [1]|

and

|(P ∪R)Y [1]| = |(P ∪R)Z [1]| iff |PY [1]| = |PZ [1]|.

Consequently, Y >cP Z iff Y >cP∪R Z.
Since RY [1] = RZ [1], also (P ∪R)Y [1] = PY [1]∪RY [1] ⊃

(P ∪ R)Z [1] = PZ [1] ∪ RZ [1] iff PY [1] ⊃ PZ [1], and (P ∪
R)Y [1] = (P∪R)Z [1] iff PY [1] = PZ [1]. Consequently, Y >iP
Z iff Y >iP∪R Z.

Since, for any r ∈ R, dY (r) = dZ(r) if there is some rule
r′ ∈ P ∪ R such that dY (r′) < dZ(r′), we obtain r′ ∈ P .
Moreover, for no rule r′′ ∈ R, dY (r′′) > dZ(r′′) can hold.
Consequently, Y >pP Z iff Y >pP∪R Z.

We are now prepared to characterize ≡κs , for κ ∈ {p, i, c}.

Definition 5. Let P , Q LPODs and κ ∈ {p, i, c}. We
say that the models of P,Q are >κ-equivalent iff, for all
interpretations Y , Z satisfying both P and Q, it holds that
Z >κP Y iff Z >κQ Y .

Theorem 7. For all LPODs P,Q and κ ∈ {p, i, c}, P ≡κs
Q iff both P ≡s Q and the models of P,Q are >κ-equivalent.

Proof. (⇐) First, suppose P 6≡s Q. Hence, there exist
an LP R, such that, without loss of generality, I ∈ AS(P ∪
R) \ AS(Q ∪ R). Let U = atoms(P ∪ Q ∪ R) and consider
the program

R′ = R ∪ {w ← I ∪ {not a | a ∈ U \ I}} ∪ {w ← not w},

where w 6∈ U . Then, I∪{w} is the only answer set of P ∪R′
and thus also κ-preferred, while Q∪R′ possesses no answer
set and thus, in particular, no κ-preferred answer-set. But
then, since R′ is an LP, P 6≡κs Q.

Second, suppose there exist interpretations Y , Z satis-
fying P ∪ Q but, without loss of generality, Z >κP Y and
Z 6>κQ Y . Moreover, let V = atoms(P ∪Q). By Lemma 5,

{Y ∪ {a}, Z ∪ {b}} = AS(P ∪R†Y,Z) = AS(Q ∪R†Y,Z).

But Y ∪{a} ∈ ASκ(Q∪R†Y,Z)\ASκ(P∪R†Y,Z). In particular,

Y ∪ {a} /∈ ASκ(P ∪ R†Y,Z) since we have Z >κP Y , and
using a /∈ P , Z ∪ {a} >κP Y ∪ {a}. Lemma 6 then yields
Z >κ

P∪R†
Y,Z

Y . This shows P 6≡κs Q.

(⇒) Assume P 6≡κs Q and, without loss of generality, Y ∈
ASκ(P ∪ R) \ ASκ(Q ∪ R) for some LP R. First, if Y /∈
AS(Q ∪ R) we are done, since then P 6≡s Q. So suppose
Y ∈ AS(Q ∪ R). Then, there exists a Z >κQ∪R Y such that
Z ∈ AS(Q ∪R). If Z /∈ AS(P ∪R) we are done again since
this yields P 6≡s Q. Hence, Y and Z are answer sets of both
P ∪R and Q∪R. Thus, Y and Z have to satisfy both P and
Q. Hence, we have that (i) Z 6>κP∪R Y (as Y ∈ ASκ(P ∪R))
and (ii) Z >κQ∪R Y (as Y 6∈ ASκ(Q ∪ R)). Z and Y are
models of R, and Lemma 6 tells us that (i) implies Z 6>κP Y
while (ii) implies Z >κQ Y . This shows that the models of
P and Q are not >κ-equivalent.

5.2 Pareto Preferred LPOD-Strong Equiva-
lence

In terms of comparison of Pareto-preferred answer sets, we
only need a slight strengthening of the semantical conditions
for ≡ps in order to capture ≡ps,×. The following relation is
used to capture this aim.

Definition 6. Given a program P and two models Y,Z
of P , Y ≥pP Z denotes that for all r ∈ P , dY (r) ≤ dZ(r).

The relation between >p and ≥p is as follows:

Lemma 8. Given a program P and two models Y,Z of P ,
we have that Y >pP Z iff jointly Y ≥pP Z and dY (r) < dZ(r),
for at least one r ∈ P .

Proof. Recall that Y >pP Z is defined as follows: There
is a rule r ∈ P such that dY (r) < dZ(r) and for no r ∈ P ,
dY (r) > dZ(r). We furthermore note that, for any r ∈ P ,
dY (r) > dZ(r) does not hold iff dY (r) ≤ dZ(r) holds. The
result thus follows.

We now define≥p-equivalence between models in the same
manner as >p-equivalence was defined in Definition 5.

Definition 7. We say that the models of two LPODs P
and Q are ≥p-equivalent iff, for all interpretations Y , Z
satisfying both P and Q, it holds that Z ≥pP Y iff Z ≥pQ Y .

Lemma 9. For all LPODs P and Q, if P ≡ps,× Q, then
the models of P,Q are ≥p-equivalent models.

Proof. Suppose Y,Z are models of P ∪ Q such that,
without loss of generality, Y ≥pP Z but Y 6≥pQ Z. Moreover,

let P and Q be given over atoms V , and let R = R†Y,Z ∪{a×
b}, with R† as defined in Lemma 5. Then, Y ′ = Y ∪ {a}
and Z′ = Z ∪ {b} are the only answer sets of P ∪ R and
Q ∪ R. However, Y ′ is an Pareto-preferred answer set for
P ∪ R while Z′ is not, as Y ′ >pP∪R Z′ is easily seen from
Y ≥pP Z and the presence of rule a × b in R. On the other
hand, Y ≥pQ Z does not hold, so there is a rule r in Q such

that dY (r) > dZ(r). Therefore, Y ′ 6≥pQ∪R Z′ which implies

Y ′ 6>pQ∪R Z
′, in view of Lemma 8. Thus, Z′ ∈ ASp(Q ∪R),

and consequently P ≡ps,× Q does not hold.

Lemma 10. For all LPODs P and Q, if P ≡ps Q and the
models of P,Q are ≥p-equivalent, then P ≡ps,× Q.

Proof. Assume P ≡ps Q and let R be an LPOD. From
P ≡ps Q we obtain by Theorem 7 that P ≡s Q holds, and
thus AS(P ∪ R) = AS(Q ∪ R). Now consider arbitrary
X,Y ∈ AS(P ∪ R). We show X >pP∪R Y iff X >pQ∪R Y .

P ≡ps,× Q then follows.
Assume X >pP∪R Y . That is, there is an r ∈ P ∪ R

such that dX(r) < dY (r) and for all r′ ∈ P ∪ R it holds
that dX(r′) ≤ dY (r′). Since the models of P,Q are ≥p-
equivalent, for all r′ ∈ Q ∪R it holds that dX(r′) ≤ dY (r′).
If there is an r ∈ R such that dX(r) < dY (r), we imme-
diately obtain X >pQ∪R Y . Otherwise, we have X ≥pR Y

and an r ∈ P such that dX(r) < dY (r), and so X >pP Y .
Since P ≡ps Q holds by hypothesis, we get from Theorem 7
that the models of P,Q are >p-equivalent, thus X >pQ Y .

Together with X ≥pR Y we obtain X >pQ∪R Y as well. Using

a symmetric argument, we can also show that X >pQ∪R Y

implies X >pP∪R Y .

Lemma 9 and 10, together with the fact that ≡ps,× implies
≡ps , provides us with the following characterization.

Theorem 11. For all LPODs P,Q, P ≡ps,× Q iff jointly
P ≡ps Q and the models of P,Q are ≥p-equivalent.

5.3 Inclusion Preferred LPOD-Strong Equiv-
alence

We now adapt our strategy for ≡is,×.

Definition 8. We say that the models of two LPODs P
and Q are ≥i-equivalent iff, for all interpretations Y , Z
satisfying both P and Q, it holds that δP (Y,Z) = δQ(Y,Z),
where, for every LPOD S,

δS(Y,Z) =

8<: k if SY [k] 6= SZ [k] and
∀j < k : SY [j] = SZ [j];

∞ otherwise.

Lemma 12. For all LPODs P and Q, if P ≡is,× Q, then

the models of P,Q are ≥i-equivalent.

Proof. Suppose the models of P and Q are not ≥i-
equivalent, witnessed by Y,Z such that, without loss of gen-
erality, k = δP (Y,Z) < δQ(Y,Z). Moreover, let P and Q be

given over atoms V and let R = R†Y,Z ∪R
k, where

Rk = {v ← ci,not v | 1 ≤ i < k}∪
{r+ : c1 × · · · × ck−1 × a× b | PY [k] ⊂ PZ [k]}∪
{r− : c1 × · · · × ck−1 × b× a | PY [k] 6⊂ PZ [k]},

where R†Y,Z is defined as in Lemma 5 and c1, . . . , ck−1, v are
fresh symbols.

We first observe that AS(P ∪R) = AS(Q∪R) = {Y ′, Z′},
where Y ′ = Y ∪ {a} and Z′ = Z ∪ {b}.

Suppose that PY [k] ⊂ PZ [k]. Then, dY ′(r
+) = k and

dZ′(r
+) = k + 1, therefore neither (P ∪ R)Y ′ [k] ⊆ (P ∪

R)Z′ [k] nor (P ∪ R)Y ′ [k] ⊇ (P ∪ R)Z′ [k]. Note also that
(P ∪R)Y ′ [j] = (P ∪R)Z′ [j] for all j < k, and hence AS i(P ∪
R) = {Y ′, Z′}, since neither Y ′ >iP∪R Z′ nor Z′ >iP∪R Y ′

holds. Recall that by hypothesis δQ(Y,Z) > k, thusQY [k] =
QZ [k] but now due to r+, (Q∪R)Y ′ [k] ⊃ (Q∪R)Z′ [k], i.e.,
we have Y >iQ∪R Z

′. Hence, AS i(Q ∪ R) = {Y ′}, and thus

P 6≡is,× Q.

For PY [k] ⊃ PZ [k], a symmetric argument shows that
AS i(P ∪ R) = {Y ′, Z′} and AS i(Q ∪ R) = {Z′}. For the
remaining case, we have neither PY [k] ⊇ PZ [k] nor PY [k] ⊆
PZ [k] (since k = δP (Y,Z)). We obtain AS i(P ∪ R) =
{Y ′, Z′} and AS i(Q ∪R) = {Y ′} as in the first case.

Lemma 13. For all LPODs P and Q, if P ≡is Q and the
models of P,Q are ≥i-equivalent, then P ≡is,× Q.

Proof. Assume P ≡is Q and let R be an LPOD. From
P ≡is Q, we obtain by Theorem 7 P ≡s Q, and thus AS(P ∪
R) = AS(Q∪R). Now consider arbitrary X,Y ∈ AS(P∪R).
We show X >iP∪R Y iff X >iQ∪R Y . P ≡is,× Q then follows.

Assume X >iP∪R Y . Hence, there exists a k such that
(P∪R)X [k] ⊃ (P∪R)Y [k] and, for each j < k, (P∪R)X [j] =
(P ∪ R)Y [j], i.e., PX [j] = PY [j] and RX [j] = RY [j]. First,
suppose PX [k] ⊃ PY [k] and RX [k] ⊇ RY [k]. Since the
models of P and Q are ≥i-equivalent, QX [k] 6= QY [k], and
for each j < k, QX [j] = QY [j]. Thus, for each j < k,
(Q∪R)X [j] = (Q∪R)Y [j]. It remains to show (Q∪R)X [k] ⊃
(Q ∪ R)Y [k] to obtain X >iQ∪R Y . Since P ≡is Q holds by
hypothesis, we get by Theorem 7 that the models of P and
Q are >i-equivalent. Thus, QX [k] ⊃ QY [k] has to hold.
Together with RX [k] ⊇ RY [k], we obtain (Q ∪ R)X [k] ⊃
(Q ∪ R)Y [k], as desired. Second, suppose RX [k] ⊃ RY [k]
and PX [k] = PY [k]. Hence, δP (X,Y) > k. Since the models
of P and Q are ≥i-equivalent, δQ(X,Y) > k holds. Hence,
for each j ≤ k, QX [j] = QY [j]. It follows that (Q∪R)X [k] ⊃
(Q ∪R)Y [k], as well as (Q ∪R)X [j] = (Q ∪R)Y [j], for each
j < k. Hence, X >iQ∪R Y .

Again, using a symmetric argument shows that X >iQ∪R
Y implies X >iP∪R Y .

Lemma 12 and 13, together with the fact that≡is,× implies

≡is, provides us with the following characterization.

Theorem 14. For all LPODs P and Q, P ≡is,× Q iff

jointly P ≡is Q and the models of P,Q are ≥i-equivalent.

5.4 Cardinality Preferred LPOD-Strong
Equivalence

The remaining equivalence notion to consider is ≡cs,×.
Here, proofs turn out to be more cumbersome. This is due
to the fact that also the number of rules appearing in the
context program is of relevance to make an interpretation
preferred over another one. Nevertheless, we can make use
of similar concepts as before.

Definition 9. We say that the models of two LPODs P
and Q are ≥c-equivalent iff, for all interpretations Y , Z
satisfying both P and Q, ∆k

P (Y,Z) = ∆k
Q(Y,Z), for all k >

0, where ∆k
S(Y,Z) = |SY [k]| − |SZ [k]|, for every LPOD S.

Lemma 15. For all LPODs P and Q, if P ≡cs,× Q, then
the models of P,Q are ≥c-equivalent.

Proof. (Sketch) Suppose the models of P and Q are
not ≥c-equivalent. So, we have two interpretations X and
Y which satisfy P and Q and, without loss of generality,
∆k0
P (X,Y) < ∆k0

Q (X,Y) for the minimal k0 among all k >

0 such that ∆k
P (X,Y) 6= ∆k

Q(X,Y). Let m = max{k |
|PX [k]|+ |PY [k]|+ |QX [k]|+ |QY [k]| > 0} be the maximum
satisfaction degree of rules in P or Q with respect to X
or Y . We then construct the following program R with

the intention that AS c(P ∪ R) ⊃ AS c(Q ∪ R). Let R =

R†X,Y ∪ R
‡
X,Y , where R†X,Y is defined as in the proof for

Theorem 7, and R‡X,Y = R+
X,Y ∪R

−
X,Y ∪

{dijj ← a | 1 ≤ j ≤ m, 1 ≤ ij ≤ |∆j
P (X,Y)|} ∪

{v ← d
ij
j , b,not v | 1 ≤ j ≤ m, 1 ≤ ij ≤ |∆j

P (X,Y)|} ∪
{eijj ← b | 1 ≤ j ≤ m, 1 ≤ ij ≤ |∆j

P (X,Y)|} ∪
{v ← e

ij
j , a,not v | 1 ≤ j ≤ m, 1 ≤ ij ≤ |∆j

P (X,Y)|} ∪
{v ← cj ,not v | 1 ≤ j ≤ m},

where

R+
X,Y = {c1 × · · · × cj−1 × d

ij
j × cj+1 × · · · × cm × b |

1≤j≤m, |PX [j]| < |PY [j]|, 1≤ij≤∆j
P (Y,X)},

R−X,Y = {c1 × · · · × cj−1 × e
ij
j × cj+1 × · · · × cm × a |

1≤j≤m, |PX [j]| > |PY [j]|, 1≤ij≤∆j
P (X,Y)},

and all cj , d
ij
j , e

ij
j and v are new symbols. The reason why

the rules in R+
X,Y and R−X,Y include d

ij
j and e

ij
j rather than

a and b is to guarantee that the rules differ also if j = m = 1.

LetX ′ = X∪{a}∪{dijj | 1 ≤ j ≤ m, 1 ≤ ij ≤ |∆
j
P (X,Y)|}

and Y ′ = Y ∪ {b} ∪ {eijj | 1 ≤ j ≤ m, 1 ≤ ij ≤ |∆
j
P (X,Y)|}.

It is easy to see that X ′ and Y ′ satisfy both P ∪R and Q∪R,
and that these are the only interpretations (over variables
in P , Q, and R) doing so.

Intuitively, for each j (1 ≤ j ≤ m) such that X satisfies
fewer rules in P to degree j than does Y , R+

X,Y gives rise to
|PY [j]|−|PX [j]| rules being satisfied to degree j with respect
to X ′. These rules are satisfied to degree m+1 with respect
to Y ′. In this way, X ′ and Y ′ satisfy the same number of
rules to degree j in P ∪R. Likewise, for those j such that X
satisfies more rules in P to degree j than Y , R−X,Y gives rise

to ∆j
P (X,Y) rules being satisfied to degree j with respect to

Y ′, which are satisfied to degree m + 1 with respect to X ′.
So, X ′ and Y ′ satisfy the same number of rules to degree j
in P ∪ R for all j up to (and including) m. Due to a more
involved argument, X ′ and Y ′ also satisfy the same number
of rules to degree m+1 in P∪R. Concerning Q∪R, however,
X ′ and Y ′ cannot satisfy the same number of rules to degree
k0. This means that both X ′ and Y ′ are c-preferred answer
sets of P ∪ R, but only one of these can be a c-preferred
answer set of Q ∪R.

Lemma 16. For all LPODs P and Q, if P ≡cs Q and the
models of P,Q are ≥c-equivalent, then P ≡cs,× Q.

Proof. Assume P ≡cs Q and let R be an LPOD. From
P ≡cs Q, we obtain by Theorem 7 P ≡s Q, and thus AS(P ∪
R) = AS(Q∪R). Now consider arbitrary X,Y ∈ AS(P∪R).
We show X >cP∪R Y iff X >cQ∪R Y . P ≡cs,× Q then follows.

Assume X >cP∪R Y . Hence, there exists a k such that
|(P ∪ R)X [k]| < |(P ∪ R)Y [k]| and, for each j < k, |(P ∪
R)X [j]| = |(P ∪R)Y [j]|. First, observe that there may exist
a j < k such that |PX [j]| 6= |PY [j]|. Then, |PX [j]|−|PY [j]| =
|RY [j]| − |RX [j]| has to hold. However, since the models of
P and Q are ≥c-equivalent, we obtain |QX [j]| − |QY [j]| =
|PX [j]| − |PY [j]| and thus |(Q ∪R)X [j]| = |(Q ∪R)Y [j]|.

To show X >cQ∪R Y , it remains to derive |(Q∪R)X [k]| <
|(Q ∪R)Y [k]|, which can be shown by a similar argumenta-
tion.

Also, the other direction proceeds in a symmetric man-
ner.

Once more, Lemma 15 and 16, together with the fact that
≡cs,× implies ≡cs, shows our final main result.

Theorem 17. For all LPODs P and Q, we have that
P ≡cs,× Q iff jointly P ≡cs Q and the models of P,Q are
≥c-equivalent.

We note that in Lemma 16 and Theorem 17 it would be
sufficient to use P ≡s Q rather than P ≡cs Q (because ≥c-
equivalence implies >c-equivalence), but we have used the
latter for uniformity with Lemmata 10 and 13 and Theo-
rems 11 and 14.

6. RELATIONSHIPS
We briefly discuss relationships among the various notions

of equivalence. To this end, we first recall that Theorem 4
shows that ≡s and ≡s,× coincide. Moreover, a somewhat
surprising result, which is a consequence of Theorems 4 and
7 is as follows:

Theorem 18. For every κ ∈ {p, i, c} and every LPOD
P,Q, P ≡κs,× Q implies P ≡s,× Q (or likewise, P ≡s Q).

Proof. By definition, P ≡κs,× Q implies P ≡κs Q. Fur-
thermore, by Theorem 7, P ≡κs Q implies P ≡s Q, which,
by Theorem 4, is equivalent to P ≡s,× Q.

In particular, P ≡κs Q implies P ≡s Q, for each κ ∈
{p, i, c}. However, the converse direction is not true. The
following example shows that P ≡s Q does not even imply
P ≡κ Q.

Example 2. Consider the programs

P = {c× a× b;
a← c; b← c; c← a, b; d← c,not d},

Q = {c× b× a;

a← c; b← c; c← a, b; d← c,not d}.

The SE-models of P and Q coincide and are given by ({a},
{a}), ({b}, {b}), ({a}, {a, d}), ({a, d}, {a, d}), ({b}, {b, d}),
({b, d}, {b, d}), ({a, b, c}, {a, b, c, d}), and ({a, b, c, d}, {a, b, c,
d}). Thus, we have P ≡s Q. Moreover, AS(P) = AS(Q) =
{{a}, {b}}. But, for each κ ∈ {p, i, c}, {a} >κP {b}, and, on
the other hand, {b} >κQ {a}, yielding ASp(P) = AS i(P) =

AS c(P) = {{a}} and ASp(Q) = AS i(Q) = AS c(Q) =
{{b}}. Hence, P 6≡κ Q.

As well, for any preference criterion κ ∈ {p, i, c}, we have
that P ≡κs,× Q implies P ≡κs Q, but in neither case the
converse holds. The following three examples demonstrate
this.

Example 3. Consider the programs P = {r1 : a× b} and
Q = {r2 : a× a× b} (rules are labeled for easier reference).
We obtain SE(P) = SE(Q) = {({a}, {a}), ({b}, {b}), ({a},
{a, b}), ({a, b}, {a, b})}. Therefore, P ≡s Q. The satisfac-
tion degrees of the models of P and Q are as follows:

P 1 2
{a} P ∅
{b} ∅ P
{a, b} P ∅

Q 1 2 3
{a} Q ∅ ∅
{b} ∅ ∅ Q
{a, b} Q ∅ ∅

Note that {a} >cP {b} and {a, b} >cP {b}, while no other
pairs of models of P are in the relation >cP . As well, {a} >cQ

{b} and {a, b} >cQ {b}, while no other pairs of models of Q
are in the relation >cQ. Therefore, P and Q are >c-equiva-
lent. By virtue of Theorem 7 we know that P ≡cs Q.

However, P and Q are not ≥c-equivalent, since

∆2
P ({a}, {b}) = −1 6= ∆2

Q({a}, {b}) = 0.

Therefore, due to Theorem 17, P 6≡cs,× Q. Indeed, consider
r3 = b × a and let P ′ = P ∪ {r3} and Q′ = Q ∪ {r3}. We
have AS(P ′) = AS(Q′) = {{a}, {b}}. Neither {a} >cP ′ {b}
nor {b} >cP ′ {a} holds, and therefore AS c(P ′) = {{a}, {b}}.
However, {a} >cQ′ {b} (because |Q′{a}[2]| = 1 > |Q′{b}[2]| =

0), and therefore AS c(Q′) = {{a}}. P 6≡cs,× Q follows.

Example 4. Now consider programs

P = {r1 : c× c× a× b; a← c; b← c; c← a, b},
Q = {r2 : c× a× b; a← c; b← c; c← a, b}.

Note that we have SE(P) = SE(Q) = {({a}, {a}), ({b}, {b}),
({a, b, c}, {a, b, c})}. Therefore, P ≡s Q. The rule satisfac-
tion degrees of the models of P and Q are as follows:

P 1 2 3 4
{a} P \ {r1} ∅ {r1} ∅
{b} P \ {r1} ∅ ∅ {r1}
{a, b, c} P ∅ ∅ ∅

Q 1 2 3
{a} Q \ {r2} {r2} ∅
{b} Q \ {r2} ∅ {r2}
{a, b, c} Q ∅ ∅

We have {a} >iP {b}, {a, b, c} >iP {a}, {a, b, c} >iP {b} and
also, {a} >iQ {b}, {a, b, c} >iQ {a}, {a, b, c} >iQ {b}. More-

over, no other pairs of models are in the relations >iP , resp.,
>iQ. Therefore, the models of P and Q are >i-equivalent.

By virtue of Theorem 7, P ≡is Q holds.
However, δP (a, b) = 3 6= δQ(a, b) = 2, and so the models

of P and Q are not ≥i-equivalent. Therefore, due to The-
orem 14, P 6≡is,× Q. Indeed, consider r3 = c × c × b × a
and let P ′ = P ∪ {r3} and Q′ = Q∪ {r3}. It can be checked
that that AS i(P ′) = {{a}, {b}}, as neither {a} >iP ′ {b} nor
{b} >iP ′ {a}. However, {a} >iQ′ {b} (because Q′{a}[2] ⊃
Q′{b}[2]), and therefore AS i(Q′) = {{a}}.

Example 5. Our final example shows that P ≡ps Q does
not imply P ≡ps,× Q. Consider

P = {r1 : d× c× a; r2 : d× c× b; a← not b;
b← not a; c← a; c← b; d← a, b; a← d; b← d},

Q = {r3 : d× a× c; r4 : d× b× c; a← not b;
b← not a; c← a; c← b; d← a, b; a← d; b← d}.

We obtain SE(P) = SE(Q) = {({a, c}, {a, c}), ({b, c}, {b,
c}), ({a, b, c, d}, {a, b, c, d})} and the following rule satisfac-
tion degrees for the models:

P 1 2
{a, c} P \ {r1, r2} {r1, r2}
{b, c} P \ {r1, r2} {r1, r2}
{a, b, c, d} P ∅

Q 1 2 3
{a, c} Q \ {r3, r4} {r3} {r4}
{b, c} Q \ {r3, r4} {r4} {r3}
{a, b, c, d} Q ∅ ∅

We have {a, b, c, d} >pP {a, c} as well as {a, b, c, d} >pP {b, c},
but neither {a, c} >pP {b, c} nor {b, c} >pP {a, c}. The same
holds for Q. Hence, P ≡ps Q holds. However, we have
{a, b, c, d} ≥pP {a, c} as well as {a, b, c, d} ≥pP {b, c}, but
now also {a, c} ≥pP {b, c} and {b, c} ≥pP {a, c}, while neither
{a, c} ≥pQ {b, c} nor {b, c} ≥pQ {a, c} holds. A witness for

P 6≡ps,× Q is the LPOD R = {e← d,not e; r5 : a×b}, where
ASp(P ∪R) = {{a, c}} and ASp(Q ∪R) = {{a, c}, {b, c}}.

Finally, we state that (not surprisingly) if we compare
only LPs, all strong-equivalence notions introduced in our
work collapse to standard strong equivalence between nor-
mal logic programs, although preference information may
be added in the context. This indeed shows that each no-
tion is a generalization of standard strong-equivalence due
to Lifschitz, Pearce and Valverde [7].

Proposition 19. For all normal programs P,Q and ev-
ery κ ∈ {p, i, c}, the following statements are equivalent:
(1) P ≡s Q, (2) P ≡s,× Q, (3) P ≡κs Q, (4) P ≡κs,× Q.

Proof. (1) ⇔ (2): This follows by Theorem 4.
(1) ⇔ (3): Note that in our case, for any model X of P

and Q, we have that PX [1] = P and QX [1] = Q, and for all
k > 1, PX [k] = QX [k] = ∅. So for any two models X,Y of
P and Q, X 6>cP Y , X 6>cQ Y , X 6>iP Y , and X 6>iQ Y , as
PX [1] = P = PY [1] and QX [1] = Q = QY [1], and QX [k] =
PX [k] = ∅ = PY [k] = QY [k] for all k > 0. Moreover,
X 6>pP Y and X 6>pQ Y hold for any two models X,Y of
P and Q, as for any rule r ∈ P ∪Q, dX(r) = 1 = dY (r). So,
P,Q have >κ-equivalent models (κ ∈ {p, i, c}), and thus by
Theorem 7 we obtain P ≡s Q iff P ≡κs Q.

(3) ⇔ (4): For any two models X,Y of P and Q, we have
|PX [k]|−|PY [k]| = 0 = |QX [k]|−|QY [k]| for all k > 0, hence
the models of P and Q are ≥c-equivalent. Additionally, we
obtain δP (X,Y) = ∞ = δQ(X,Y), and so the models of P
and Q are ≥i-equivalent. Moreover, since X and Y satisfy
all rules to degree 1, X ≥pP Y and X ≥pQ Y both hold, so
the models of P and Q are also ≥p-equivalent. Therefore, by
Theorems 11, 14, and 17, we get P ≡κs Q iff P ≡κs,× Q.

7. DISCUSSION
In this paper, we discussed different notions of strong

equivalence for logic programs with ordered disjunctions,
extending the usual one for normal logic programs. Follow-
ing Brewka et al. [2, 3], we studied Pareto, inclusion, and
cardinality based preference relations and introduced corre-
sponding equivalence notions based on these strategies. We
provided model-theoretic characterizations and introduced
to that end a novel notion of a reduct for LPODs, leading
to a direct generalization of the well-known characterization
of strong equivalence for LPs by Turner [10].

Although ≡κs,×, for κ ∈ {p, i, c}, is arguably the most
direct generalization of strong equivalence for normal pro-
grams, in the sense that it tests whether two LPODs have
the same preferred answer sets in any context, the other no-
tions are nonetheless relevant—in fact, our characterizations
for ≡κs,× make use of these notions.

Concerning related work, to the best of our knowledge,
strong equivalence with respect to programs allowing for
a representation of preferences has been studied only by
Faber and Konczak [5] (called “strong order equivalence”).
However, the formalism studied there differs considerably

from LPODs. Already syntactically, preferences are speci-
fied among rules using a construct different from rules. In
LPODs, preferences are specified among atoms using an ex-
tended rule syntax. For this reason, also the semantics of
the formalisms are hardly comparable. Indeed, also the
characterizations of strong order equivalence obtained by
Faber and Konczak [5] are quite different: For instance,
the preferences expressed in two strongly order equivalent
programs have to be exactly equal. This also implies that
the rules upon which preferences are defined must occur in
both strongly order equivalent programs. Therefore, one can
never substitute a rule upon which a preference is expressed
by another one without losing strong order equivalence.

Interesting issues for future work include the consideration
of notions for uniform equivalence between LPODs, as well
as analyzing the computational complexity of our notions.

8. REFERENCES
[1] C. Baral. Knowledge Representation, Reasoning and

Declarative Problem Solving. Cambridge University
Press, 2002.

[2] G. Brewka. Logic programming with ordered
disjunction. In Proc. AAAI’02, pages 100–105. AAAI
Press, 2002.

[3] G. Brewka, I. Niemelä, and T. Syrjänen. Logic
programs with ordered disjunctions. Computational
Intelligence, 20(2):335–357, 2004.

[4] J. P. Delgrande, T. Schaub, H. Tompits, and
K. Wang. A classification and survey of preference
handling approaches in nonmonotonic reasoning.
Computational Intelligence, 20(2):308–334, 2004.

[5] W. Faber and K. Konczak. Strong order equivalence.
Annals of Mathematics and Artificial Intelligence,
47(1–2):43–78, 2006.

[6] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In Proc. ICLP’88,
pages 1070–1080. MIT Press, 1988.

[7] V. Lifschitz, D. Pearce, and A. Valverde. Strongly
equivalent logic programs. ACM Transactions on
Computational Logic, 2(4):526–541, 2001.

[8] V. Marek and M. Truszczyński. Stable models and an
alternative logic programming paradigm. In The Logic
Programming Paradigm: A 25-Year Perspective, pages
375–398. Springer Verlag, 1999.

[9] I. Niemelä. Logic programs with stable model
semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence,
25:241–273, 1999.

[10] H. Turner. Strong equivalence made easy: Nested
expressions and weight constraints. Theory and
Practice of Logic Programming, 3(4–5):609–622, 2003.

