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Abstract. The study of different notions of equivalence is one of the corner-
stones of current research in answer-set programming. This is mainly motivated
by the needs of program simplification and modular programming, for which or-
dinary equivalence is insufficient. A recently introduced equivalence notion in
this context is hyperequivalence, which includes as special cases strong, uniform,
and ordinary equivalence. We study in this paper the question of replacing pro-
grams by syntactically simpler ones preserving hyperequivalence (we refer to
such a replacement as a casting). In particular, we provide necessary and suffi-
cient semantic conditions under which the elimination of disjunction, negation,
or both, in programs is possible, preserving hyperequivalence. In other words,
we characterise in model-theoretic terms when a disjunctive logic program can
be replaced by a hyperequivalent normal, positive, or Horn program, respectively.
Furthermore, we study the computational complexity of the considered tasks and,
based on similar results for strong equivalence developed in previous work, we
provide methods for constructing the respective hyperequivalent programs. Our
results contribute to the understanding of problem settings in logic programming
in the sense that they show in which scenarios the usage of certain constructs are
superfluous or not.

1 Introduction

Answer-set programming (ASP) is an important logic-programming paradigm [1] that
is based on principles of nonmonotonic reasoning and became popular for its fully
declarative semantics [2]. An important research field in ASP is the study of equivalence
of answer-set programs. Given the nonmonotonic nature of logic programs under the
answer-set semantics, ordinary equivalence (which holds between two programs if their
answer sets coincide) is too weak to yield a replacement property similar to the one of
classical logic. That is to say, given a program P = Q ∪ R, when replacing Q with an
ordinarily equivalent programQ′, it is not guaranteed thatQ′∪R is ordinarily equivalent
to P . This led to the introduction of stricter notions of equivalence, in particular strong
and uniform equivalence: two programs, P and Q, are strongly equivalent [3] if P ∪R
and Q ∪ R have the same answer sets for any program R, called the context, while
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they are uniformly equivalent [4] if the context is restricted to sets of facts. Recently,
Woltran [5] introduced hyperequivalence, or head-body relativised equivalence, which
is a parametrised notion that subsumes as special cases strong, uniform, and ordinary
equivalence. It allows for specifying, on the one hand, the atoms which are permitted to
occur in the rule heads of context programs and, on the other hand, the atoms allowed
in the rule bodies. Besides generalising various equivalence notions, hyperequivalence
can be parametrised for application-specific equivalence tests [6].

In this paper, we are interested in the question whether a given disjunctive logic pro-
gram P can be replaced by a program Q that is from a syntactically simpler program
class than P preserving hyperequivalence (we refer to Q as a casting of P ). In partic-
ular, we are interested in the questions whether a given program can be casted (i) to a
program without disjunctions, (ii) to a program without negations, and (iii) to a pro-
gram without both disjunctions and negations. There is previous work addressing these
questions for the notions of strong and uniform equivalence [7, 8], introducing model-
theoretic characterisations when a casting is possible. We will introduce such conditions
for the general case of hyperequivalence, and thereby obtain proper generalisations of
the old concepts. More specifically, our main contributions are the following:

– We introduce necessary and sufficient conditions for deciding whether, for a given
program, a hyperequivalent normal, positive, or Horn program exists. These condi-
tions are model-theoretic, operating on sets of SE-interpretations [9], which are
well-known structures derived from the logical underpinning of strong equiva-
lence [3].

– We provide methods that allow the construction of a casting, whenever a given pro-
gram is castable. That is, if a program satisfies one of our model-theoretic condi-
tions, we give a constructive method for finding a desired hyperequivalent program.

– We analyse the complexity of the casting problems under consideration. It turns out
that these are located on the second and third level of the polynomial hierarchy.

In many situations, our results allow for program simplifications that are not pos-
sible under stronger notions of equivalence. For example, the program Pex = {f ←
b,not n; n ← p; b ∨ p} cannot be replaced by a program Q without negations such
that Pex∪R and Q∪R have the same answer sets for every program R. However, such
a Q exists whenever atoms b and n do not occur in the head of any rule of R.

Casting under hyperequivalence is also essential for program simplification and
modular programming: Depending on the atoms permitted to occur in the rule heads
and rule bodies in the context, a module can faithfully be replaced by a simpler one.
Moreover, understanding under which circumstances such a replacement is possible
gives insight into which roles negation and disjunction play in a certain program.

2 Preliminaries

We deal with finite propositional disjunctive logic programs containing rules (over a set
At of atoms) of form a1 ∨ · · · ∨ al ← b1, . . . , bm,not bm+1, . . . ,not bn, where l ≥ 0,
n ≥ m ≥ 0, all ai, bj are from At , and not denotes default negation. A rule r as
described is normal, if l ≤ 1; positive, if m = n; and a fact, if l = 1 and m = n = 0.



A rule is Horn if it is positive and normal. The head of r is the set H(r) = {a1, . . . , al};
the body of r is B(r) = {b1, . . . , bm,not bm+1, . . . , not bn}. We also define B+(r) =
{b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. A disjunctive logic program (DLP) over
At , or simply a program, is a finite set of rules over At . A DLP P is a normal logic
program (NLP) if every rule in P is normal. Likewise, P is a positive logic program
(PLP) if every rule in P is normal, and it is a Horn program if every rule in it is Horn.
We denote the class of all DLPs (resp., NLPs, PLPs, Horn programs) by DLP (resp.,
NLP , PLP ,HORN ). Furthermore, atm(P ) stands for the set of all atoms occurring
in P , and we define H(P ) =

⋃
r∈P H(r) and B(P ) =

⋃
r∈P (B+(r) ∪B−(r)).

Let I be an interpretation, i.e., a set of atoms. I satisfies a rule r, symbolically
I |= r, iff I ∩ H(r) 6= ∅ whenever B+(r) ⊆ I and I ∩ B−(r) = ∅ jointly hold.
Furthermore, I is a model of a program P , symbolically I |= P , iff I |= r, for all
r ∈ P . I is an answer set [2] of a program P iff I is a minimal model of P I , where
P I = {H(r)← B+(r) | r ∈ P, B−(r) ∩ I = ∅} is the reduct of P relative to I .

We recall the recently introduced notion of hyperequivalence, also called head-
body-relativised equivalence [5]. The idea is to restrict the alphabets of rule heads and
rule bodies of the context programs, and thereby limiting the nonmonotonic side-effects
of putting a program in some context. For alphabets H,B ⊆ At , let DLPHB denote the
class of all programs P such that H(P ) ⊆ H and B(P ) ⊆ B. Then, two programs
P,Q over At are hyperequivalent relative to 〈H,B〉, or 〈H,B〉-equivalent, in symbols
P ≡HB Q, iff, for each R ∈ DLPHB , it holds that AS(P ∪ R) = AS(Q ∪ R). Hyper-
equivalence includes well-known equivalence notions as special cases: strong equiva-
lence [3] coincides with 〈At ,At〉-equivalence; uniform equivalence [4] coincides with
〈At , ∅〉-equivalence; and ordinary equivalence coincides with 〈∅, ∅〉-equivalence.

Following Turner [9], strong equivalence can model-theoretically be characterised
in terms of SE-models: First of all, by an SE-interpretation we understand a pair (X,Y ),
where X,Y ⊆ At are sets of atoms such that X ⊆ Y . If X = Y , then (X,Y ) is
total, otherwise (X,Y ) is non-total. An SE-interpretation (X,Y ) is an SE-model of a
program P over At if Y |= P and X |= PY . It then holds that two programs P and
Q are strongly equivalent iff they possess the same set of SE-models. In view of the
logical underpinning of strong equivalence [3], viz., the logic of here-and-there [10]
(also known as Gödel’s three-valued logic [11]), the first component of an SE-inter-
pretation is identified with the world “here”, whilst the second component refers to the
world “there”. We write SE (P ) to refer to the set of all SE-models of a program P .

A semantical characterisation for hyperequivalence, similar to that using SE-models
for strong equivalence, is given by the concept of an HE-model [5].1 ForH,B, X, Y ⊆
At , an SE-interpretation (X,Y ) is an HE-model relative to 〈H,B〉 of a DLP P over At ,
or an 〈H,B〉-model of P for short, iff (i) Y |= P , (ii) for all Y ′ ⊂ Y with Y ′∩H = Y ∩
H, it holds that Y ′ 6|= PY , (iii) if X ⊂ Y , there is an X ′ ⊂ Y with X ′ ∩ (H∪B) = X
such that X ′ |= PY , and (iv) if X ⊂ Y , for each X ′ ⊂ Y with (X ∩ H) ⊆ (X ′ ∩ H),
(X ′ ∩ B) ⊆ (X ∩ B), and X 6= X ′ ∩ (H ∪ B), it holds that X ′ 6|= PY . The set of all
〈H,B〉-models of a program P is denoted by HEHB (P ). Note that, for every non-total
〈H,B〉-model (X,Y ) of P , it holds that (X ∩H) ⊂ (Y ∩H) and X ⊂ Y ∩ (H ∪ B).

1 We slightly rephrase the original definition of an HE-model.



Proposition 1 ([5]). For all programs P,Q over At and everyH,B ⊆ At , P ≡HB Q iff
HEHB (P ) = HEHB (Q).

3 Setting the Stage: Casting under Strong Equivalence

The main question addressed in this paper is expressed by the following parametrised
decision problem:

Definition 1. Let C be a class of programs over some set At of atoms. Then, CAST(C)
is the problem of deciding whether, for a given DLP P over At and sets H,B ⊆ At of
atoms, there exists a program Q ∈ C with P ≡HB Q.

If a program P together with sets H,B of atoms constitute a yes-instance of CAST(C),
we say that P is castable to C under 〈H,B〉-equivalence. Furthermore, a program Q ∈
C with P ≡HB Q is called an 〈H,B〉-casting of P to C. In this paper, we are interested
in those versions of CAST(C) where C ∈ {NLP,PLP,HORN}. Our aim is to find
model-theoretic conditions precisely characterising the yes-instances of CAST(C). We
do so by providing, for each class C as above and setsH,B of atoms, a property φHB,C(·)
satisfying the following key condition:

(?) φHB,C(S) holds iff there exists a program Q ∈ C with S = HEHB (Q), for each set S
of SE-interpretations.

From this, we immediately get that, for a given DLP P , φHB,C(HEHB (P )) holds iff there
exists a program Q ∈ C such that HEHB (P ) = HEHB (Q), which in turn implies that
φHB,C(HEHB (P )) holds iff P together withH and B is a yes-instance of CAST(C), repre-
senting our desired characterisation. In addition to deciding whether an 〈H,B〉-casting
of P exists, we also provide constructive methods to obtain such castings.

As a preparatory step towards the general setting, in this section we deal with the
case where H = B = At , corresponding to casting under strong equivalence, which
was already studied in the literature [12, 8, 7]. In particular, we will provide a special
case of Condition (?), in terms of a property ϕC(·), amounting to φAt

At,C(·), as follows:

(?SE ) ϕC(S) holds iff there exists a program Q ∈ C with SE (Q) = S, for each set S
of SE-interpretations.

We start with the following concept: A set S of SE-interpretations is well-defined
iff, for each (X,Y ) ∈ S, also (Y, Y ) ∈ S. A well-defined set S of SE-interpretations is
complete iff, for each (X,Y ) ∈ S, also (X,Z) ∈ S, for any Y ⊆ Z with (Z,Z) ∈ S.

Proposition 2 ([12]). For each DLP P , SE (P ) is complete. Moreover, for any com-
plete set S of SE-interpretations (over At), there is a DLP Q (over At) such that
SE (Q) = S.

Eiter, Tompits, and Woltran [12] describe, for a given complete set S of SE-inter-
pretations, a concrete way for obtaining a DLP, CPS , such that SE (CPS) = S holds,
which we refer to as the canonical program for S. In fact, CPS is composed of rules
← Y,not (At \Y ), for each Y ⊆ At such that (Y, Y ) /∈ S, and of rules

∨
p∈(Y \X) p←

X,not (At \ Y ), for each X ⊂ Y such that (X,Y ) /∈ S and (Y, Y ) ∈ S.



To characterise programs castable to NLP , we need an additional criterion on SE-
interpretations: A set S of SE-interpretations is closed under here-intersection, or HI-
closed, iff, whenever (X,Y ) ∈ S and (X ′, Y ) ∈ S , then (X ∩ X ′, Y ) ∈ S . This
property results from the facts that the reduct of a program relative to a set of atoms is
a Horn program if disjunction is not involved, and that the models of Horn theories are
closed under intersection.

The characterising property for DLPs that can be casted toPLP under strong equiv-
alence is called here-totality: A set S of SE-interpretations is here-total iff, for any pair
(X,Y ) ∈ S, it holds that (X,X) ∈ S.

In order for a DLP P to be castable to HORN under strong equivalence, it is not
sufficient that SE (P ) is both HI-closed and here-total. In fact, the transformations to
an NLP introduce in general negations, and those to a PLP disjunctions. Additionally, it
turns out that the property of closure under there-intersection is required: A set S of SE-
interpretations is closed under there-intersection, or TI-closed, iff, whenever (X,X) ∈
S and (Y, Y ) ∈ S, then (X ∩ Y,X ∩ Y ) ∈ S. Note that a set of SE-interpretations
which is here-total and TI-closed is also HI-closed.

The next proposition states how the defined properties characterise castable DLPs.

Proposition 3 ([8, 7]). Let P be a DLP over set of atoms At . Then, there exists (i) an
NLP Q with P ≡At

At Q iff SE (P ) is HI-closed, (ii) a PLP Q′ with P ≡At
At Q

′ iff SE (P )
is here-total, and (iii) a Horn program Q′′ with P ≡At

At Q
′′ iff SE (P ) is here-total and

TI-closed.

Example 1. Consider programs P1 = {b∨c← a; a← not b; b← not a; b← not c}
and P2 = {a ∨ b ← c; b ← a; a ← b,not c; c ← b,not a; ← a, b, c} over {a, b, c}.
The sets of SE-models of these programs are2

SE (P1) = {(b, b), (b, ab), (ab, ab), (ac, ac), (b, bc), (bc, bc),
(∅, abc), (b, abc), (c, abc), (ab, abc), (ac, abc), (bc, abc), (abc, abc)} and

SE (P2) = {(∅, ∅), (∅, ab), (ab, ab), (∅, bc), (bc, bc)}.

SE (P1) is not HI-closed as it contains (ab, abc), (ac, abc), but not (a, abc). Hence,
for each NLP Q, P1 6≡At

At Q. SE (P2) is HI-closed and P2 ≡At
At P ′2 holds for NLP

P ′2 = {a← b,not c; c← b,not a; b← a; b← c; ← a, b, c}.

For creating a strongly equivalent NLP for a given DLP P with SE (P ) being HI-closed,
we refer to a known technique for removing disjunctions under strong equivalence [8].

Example 2. For program P1 from Example 1, SE (P1) is not here-total, since, e.g.,
(∅, abc) ∈ SE (P1) but (∅, ∅) /∈ SE (P1). Hence, there is no strongly equivalent PLP.
Consider program P3 = {a← not b; b← not a; ← a, b} over {a, b} with SE (P3) =
{(a, a), (b, b)} that is here-total. P3 can be replaced by the strongly equivalent PLP
P ′3 = {a ∨ b←; ← a, b}.

Note that P ′3 is obtained from P3 by moving all atoms from B−(r) of each rule r
to H(r). This transformation is called the left-shift of a program. Generally, the left-
shift of any DLP P , where SE (P ) is here-total, is strongly equivalent to P .

2 We write “abc” instead of “{a, b, c}”, “a” instead of “{a}”, etc.



Example 3. For program P2 from Example 1, SE (P2) is HI-closed, here-total, but not
TI-closed, as (ab, ab), (bc, bc) ∈ SE (P2) but (b, b) /∈ SE (P2). Hence, there is no Horn
program which is strongly equivalent to P2. Consider program P4 = {a ∨ b ←; a ←
b,not c; ← b, c} over {a, b, c}, where SE (P4) = {(a, a), (a, ab), (ab, ab), (a, ac),
(ac, ac)} is both here-total and TI-closed. P4 can be replaced by the strongly equivalent
Horn program P ′4 = {a←; ← b, c}.

To obtain a Horn program Q such that P ≡HB Q for a given DLP P , we proceed in
two steps. First, a left-shift is applied on P to obtain a strongly equivalent PLP. Then,
the remaining disjunctions can be eliminated by removing atoms from rule heads, as
suggested by the following theorem.

Theorem 1. For every PLP P such that SE (P ) is TI-closed, a Horn program P ′ such
that P ≡At

At P
′ can be obtained by removing all but one atom, a, from the head of each

rule r ∈ P with |H(r)| > 1. Thereby, a has to be chosen in such a way that, for every
model Y of P with B(r) ⊆ Y , a ∈ Y holds.

For lifting the results for strong equivalence to general hyperequivalence, we will
need the following consequence of Propositions 2 and 3.

Theorem 2. Let S be a set of SE-interpretations. Then, there exists

– an NLP Q with SE (Q) = S iff S is complete and HI-closed,
– a PLP Q′ with SE (Q′) = S iff S is complete and here-total, and
– a Horn program Q′′ with SE (Q′′) = S iff S is complete, here-total, and TI-closed.

4 Main Results

We now lift the results for strong equivalence to hyperequivalence. Note that Theo-
rem 2 provides us with the special case (?SE ) of our key condition (?), expressing
that a property ϕC(S) holds iff there exists a program Q ∈ C with SE (Q) = S, for
each C ∈ {NLP,PLP, HORN}. We will use this property for proving the general
case of Condition (?), thus establishing our main results, as outlined in the beginning
of Section 3. This is achieved as follows: First of all, for each C as above, we define
the corresponding property φHB,C(·) together with a function τHB,C(·) from sets of SE-
interpretations to sets of SE-interpretations, which we refer to as a completion transfor-
mation, such that the following properties hold:

(i) if, for a set S of SE-interpretations, φHB,C(S) holds, then ϕC(τHB,C(S)) holds;
(ii) if, for a set S of SE-interpretations, φHB,C(S) holds and there exists a programQ ∈ C

such that τHB,C(S) = SE (Q), then HEHB (Q) = S;
(iii) for every program Q ∈ C, φHB,C(HEHB (Q)) holds.

From these properties, (?) can then be established as follows: Assume that φHB,C(S)
holds. Then, by (i), so does ϕC(τHB,C(S)). From property (?SE ) it follows that there is
a program Q ∈ C with SE (Q) = τHB,C(S). Hence, by (ii), HEHB (Q) = S. Conversely,
let Q ∈ C be a program with HEHB (Q) = S. By (iii), φHB,C(HEHB (Q)) holds. Since



HEHB (Q) = S, we get that φHB,C(S) holds. Hence, (?) holds. As argued in Section 3, (?)
in turn implies our main result expressing that, for each C ∈ {NLP, PLP,HORN},
φHB,C(HEHB (P )) holds iff P ,H, and B constitute a yes-instance of CAST(C).

In the remainder of this section we will show, for each individual class C, how
φHB,C(·) and τHB,C(·) are defined. We will provide the main proofs for the case of casting
to NLP but only show the constructions and formulate the main results for the cases
of casting to PLP andHORN due to space limitations.

4.1 Completeness for Hyperequivalence Models

First, we will introduce the notion of 〈H,B〉-completeness, a property of sets of SE-
interpretations which is characteristic for the set of all 〈H,B〉-models of a program.

Definition 2. Let H,B be sets of atoms and S a set of SE-interpretations. Then, S is
〈H,B〉-well-defined if, for each (X,Y ) ∈ S such thatX ⊂ Y , it holds that (i) (Y, Y ) ∈
S, (ii) X ⊂ (Y ∩ (H∪B)), (iii) (X ∩H) ⊂ (Y ∩H), and (iv) there is no (X ′, Y ) ∈ S
with X ′ ⊂ Y , (X ∩H) ⊆ (X ′ ∩H), (X ′ ∩ B) ⊆ (X ∩ B), and X 6= X ′.

Moreover, S is 〈H,B〉-complete if S is 〈H,B〉-well-defined and, for all X,Y, Z
such that (X,Y ), (Z,Z) ∈ S and Y ⊂ Z, there is someX ′ ⊂ Z such that (X ′, Z) ∈ S,
(X ∩H) ⊆ (X ′ ∩H), and (X ′ ∩ B) ⊆ (X ∩ B).

Condition (i) of 〈H,B〉-well-definedness subsumes well-definedness. Conditions (ii)
and (iii) reflect that the “there”-component Y of an 〈H,B〉-model of P is a model
of PY , minimal amongst the models sharing the same atoms from H, and express that
the “here”-component of non-total 〈H,B〉-models is a subset of H ∪ B. Observe that
Condition (iv) expresses an optimality property of non-total 〈H,B〉-models with respect
to sets H and B. For relating 〈H,B〉-models to SE-models, this optimality criterion is
also captured in the following notion:

Definition 3. LetH,B be sets of atoms and S a set of SE-interpretations. Then, a non-
total SE-interpretation (X,Y ) ∈ S is 〈H,B〉-optimal in S if there is no X ′ ⊂ Y such
that (X ′, Y ) ∈ S , (X ∩ H) ⊆ (X ′ ∩ H), (X ′ ∩ B) ⊆ (X ∩ B), and X ∩ (H ∪ B) 6=
X ′ ∩ (H ∪ B).

The following two lemmas express relations between SE-models and HE-models.

Lemma 1. Let H,B ⊆ At be sets of atoms, P a DLP over At , and (X,Y ) a non-
total SE-model of P that is 〈H,B〉-optimal in SE (P ). If (Y, Y ) ∈ HEHB (P ), then
(X ∩ (H ∪ B), Y ) ∈ HEHB (P ).

Lemma 2. Let H,B ⊆ At be sets of atoms and P a DLP over At . If (Y, Y ) is an
〈H,B〉-model of P , then (Y, Y ) is an SE-model of P . If (X,Y ) is a non-total 〈H,B〉-
model of P , then, for some X ′ ⊂ Y with X = X ′ ∩ (H ∪ B), (X ′, Y ) ∈ SE (P ) and
(X ′, Y ) is 〈H,B〉-optimal in SE (P ).

With Lemmas 1 and 2 at hand, we can show the following result for DLPs.

Theorem 3. LetH,B ⊆ At be sets of atoms and P a DLP over At . Then, HEHB (P ) is
〈H,B〉-complete.



Proof. First, we show that HEHB (P ) is 〈H,B〉-well-defined. Consider some X ⊂ Y
with (X,Y ) ∈ HEHB (P ). Conditions (i) and (ii) of the definition of an〈H,B〉-model
are satisfied for (Y, Y ). As (Y, Y ) is total, also Conditions (iii) and (iv) hold, and con-
sequently (Y, Y ) ∈ HEHB (P ). Since (X,Y ) is non-total, we have that (X ∩ H) ⊂
(Y ∩ H) and X ⊂ Y ∩ (H ∪ B). Towards a contradiction, assume that there is some
(U, Y ) ∈ HEHB (P ) with U ⊂ Y , (X ∩ H) ⊆ (U ∩ H), (U ∩ B) ⊆ (X ∩ B), and
X 6= U . From (U, Y ) ∈ HEHB (P ) it follows from Condition (iii) of the definition of an
〈H,B〉-model of P that there is some U ′ ⊂ Y with U ′ |= PY and U ′ ∩ (H ∩ B) = U .
From the latter and X 6= U , we get X 6= U ′ ∩ (H ∩ B). Furthermore, it holds that
(X ∩ H) ⊆ (U ′ ∩ H) and (U ′ ∩ B) ⊆ (X ∩ B). Since (X,Y ) ∈ HEHB (P ), we
get by Condition (iv) that U ′ 6|= PY , being a contradiction to our previous result that
U ′ |= PY . Hence, HEHB (P ) is 〈H,B〉-well-defined. Towards a contradiction, assume
there is a DLP P such that HEHB (P ) is not 〈H,B〉-complete. Observe that there must be
someX,Y, Z with Y ⊂ Z such that (X,Y ), (Z,Z) ∈ HEHB (P ) and, for everyX ′ ⊂ Z
with (X ∩H) ⊆ (X ′ ∩H) and (X ′ ∩B) ⊆ (X ∩B), it holds that (X ′, Z) /∈ HEHB (P ).
Now we show that there is some X ′ ⊂ Z such that X ′ ∩ (H ∪ B) = X ∩ (H ∪ B)
and (X ′, Z) ∈ SE (P ). Consider the case that X = Y . We know from Lemma 2 that
(X,X) and (Z,Z) are SE-models of P . By completeness of SE-models, we get that
(X,Z) ∈ SE (P ). Note that X ⊂ Z. Now assume that X ⊂ Y . Then, by Lemma 2,
there is a U ⊂ Z with X = U ∩ (H ∪ B) such that (U, Y ) ∈ SE (P ). Thus, since
(Z,Z) ∈ SE (P ) and it holds that Y ⊆ Z, we get by completeness of SE-models that
(U,Z) ∈ SE (P ). Consequently, in either case, there exists some X ′ ⊂ Z such that
X ′ ∩ (H ∪ B) = X ∩ (H ∪ B) and (X ′, Z) ∈ SE (P ). From that, and by definition of
〈H,B〉-optimality, there exists an 〈H,B〉-optimalXopt ⊂ Z in SE (P ) with (X∩H) ⊆
(Xopt ∩H) and (Xopt ∩B) ⊆ (X ∩B). By 〈H,B〉-optimality ofXopt in SE (P ), since
(Z,Z) ∈ HEHB (P ), we get by Lemma 1 that (Xopt ∩ (H ∪ B), Z) ∈ HEHB (P ). How-
ever, as (X ∩ H) ⊆ (Xopt ∩ H) and (Xopt ∩ B) ⊆ (X ∩ B), this is a contradiction to
our observation. Hence, HEHB (P ) is 〈H,B〉-complete. ut

Next, we show that, conversely, for every 〈H,B〉-complete set S of SE-interpreta-
tions, there is a DLP P such that HEHB (P ) = S. To this end, we define a mapping
cH,B(·), representing the completion transformation τHB,C(·) for the case C = NLP
mentioned at the beginning of this section, assigning sets of SE-interpretations to sets
of SE-interpretations, serving a double role: On the one hand, it is a device to construct
a DLP from any 〈H,B〉-complete set S of SE-interpretations. On the other hand, the
rewriting is designed such that cH,B(S) is HI-closed iff S is 〈H,B〉-closed under here-
intersection, a property that is described later in this section.

Definition 4. Let H,B be sets of atoms. For every set S of SE-interpretations, let
cH,B(S) be given by {(Y, Y ) | (Y, Y ) ∈ S} ∪ {(X,Y ) | X ⊂ Y, (X ∩ H) ⊆
(X ′ ∩H), (X ′ ∩ B) ⊆ (X ∩ B), (X ′, Y ) ∈ S, X ′ ⊂ Y }.

Note that whenever (X,Y ) ∈ S, also (X,Y ) ∈ cH,B(S).

Lemma 3. Let H,B be sets of atoms and S a set of SE-interpretations. If S is 〈H,B〉-
complete, then cH,B(S) is complete.



Proof. Assume that S is 〈H,B〉-complete. First, we show that cH,B(S) is well-defined.
Consider some (X,Y ) ∈ cH,B(S) with X ⊂ Y . By Definition 4, there is some
(X ′, Y ) ∈ S. Since S is well-defined, we also have (Y, Y ) ∈ S and therefore (Y, Y ) ∈
cH,B(S). So, cH,B(S) is well-defined. Towards a contradiction, assume that cH,B(S)
is not complete. There must be some interpretations X,Y, Z with Y ⊆ Z such that
(X,Y ), (Z,Z) ∈ cH,B(S) and (X,Z) /∈ cH,B(S). Note that by Definition 4, it holds
that (Z,Z) ∈ S. From (X,Y ) ∈ cH,B(S), it follows that X ⊆ Y . Furthermore, it must
hold that Y ⊂ Z, as otherwise (X,Z) = (X,Y ) ∈ cH,B(S). In case that X = Y , we
get by Definition 4 that (X,X) ∈ S . Since (Z,Z) ∈ S , by 〈H,B〉-completeness of S
there is anX ′ ⊂ Z, where (X ′, Z) ∈ S, (X∩H) ⊆ (X ′∩H) and (X ′∩B) ⊆ (X∩B).
In case that X ⊂ Y , we get by Definition 4 that there is some (X ′′, Y ) ∈ S such that
(X ∩ H) ⊆ (X ′′ ∩ H) and (X ′′ ∩ B) ⊆ (X ∩ B). Since (Z,Z) ∈ S , by 〈H,B〉-
completeness of S, there is again an X ′ ⊂ Z with (X ′, Z) ∈ S , where (X ∩ H) ⊆
(X ′′ ∩ H) ⊆ (X ′ ∩ H) and (X ′ ∩ B) ⊆ (X ′′ ∩ B) ⊆ (X ∩ B). Therefore, in both
cases, we have (X,Z) ∈ cH,B(S), being a contradiction to (X,Z) /∈ cH,B(S). Hence,
cH,B(S) is complete. ut

The next lemma shows that a program having cH,B(S) as its set of SE-models is
guaranteed to have S as its set of 〈H,B〉-models. This is the case since all freshly
introduced SE-interpretations either lack 〈H,B〉-optimality in cH,B(S) or are already
represented by an SE-interpretation in S.

Lemma 4. LetH,B ⊆ At be sets of atoms, S a set of SE-interpretations, and P a DLP
over At . If SE (P ) = cH,B(S) and S is 〈H,B〉-complete, then HEHB (P ) = S.

Now we put things together. By using Proposition 2 and Lemmas 3 and 4 we get
the following result:

Theorem 4. LetH,B ⊆ At be sets of atoms. Then, for every 〈H,B〉-complete set S of
SE-interpretations, there is a DLP P over At such that HEHB (P ) = S.

4.2 Elimination of Disjunction

While 〈H,B〉-completeness generally characterises sets of SE-interpretations that are
〈H,B〉-models of a DLP, we now define a supplementary property for NLPs.

Definition 5. Let H and B be sets of atoms. A set S of SE-interpretations is 〈H,B〉-
closed under here-intersection, or 〈H,B〉-HI-closed, if, whenever (X1, Y ) ∈ S and
(X2, Y ) ∈ S, withX1 ⊂ Y andX2 ⊂ Y , there is someX ′ ⊂ Y such that (X ′, Y ) ∈ S,
(X1 ∩X2) ∩H ⊆ (X ′ ∩H), and (X ′ ∩ B) ⊆ (X1 ∩X2) ∩ B.

In terms of the discussion from the beginning of this section, the joint stipulation of
〈H,B〉-completeness and 〈H,B〉-closure under here-intersection amounts to condition
φHB,C(·) for C = NLP .

Theorem 5. Let H,B ⊆ At be sets of atoms and P an NLP over At . Then, HEHB (P )
is 〈H,B〉-HI-closed.



Proof. Towards a contradiction, assume HEHB (P ) is not 〈H,B〉-HI-closed. Then, there
must be some X1, X2, Y such that (X1, Y ), (X2, Y ) ∈ HEHB (P ) with X1 ⊂ Y and
X2 ⊂ Y , but there is no X ′ ⊂ Y such that (X ′, Y ) ∈ HEHB (P ), (X1 ∩ X2 ∩ H) ⊆
(X ′∩H), and (X ′∩B) ⊆ (X1∩X2∩B). Note that therefore (X1∩X2, Y ) /∈ HEHB (P ).
Moreover, from well-definedness of HEHB (P ) and (X ′, Y ) ∈ HEHB (P ), it follows that
(Y, Y ) ∈ HEHB (P ). By Lemma 2, there are SE-models (X ′1, Y ), (X ′2, Y ) of P such that
X ′1 ⊂ Y , X ′2 ⊂ Y , X1 = (X ′1 ∩ (H∪B)), and X2 = (X ′2∩ (H∪B)). As P is an NLP,
from Theorem 2 it follows that SE (P ) is HI-closed. Therefore, (X ′1∩X ′2, Y ) ∈ SE (P )
holds. Note that Conditions (i) and (ii) of the definition for being an 〈H,B〉-model of P
are satisfied by (X1∩X2, Y ) since (Y, Y ) ∈ HEHB (P ). Furthermore, from (X ′1∩X ′2) ⊂
Y , (X ′1∩X ′2∩(H∪B)) = (X1∩X2), andX ′1∩X ′2 |= PY , it follows that Condition (iii)
holds. Since (X1 ∩X2, Y ) /∈ HEHB (P ), Condition (iv) must be violated. Hence, there
is some X ′ ⊂ Y with (X1 ∩X2 ∩ H) ⊆ (X ′ ∩ H), (X ′ ∩ B) ⊆ (X1 ∩X2 ∩ B), and
(X1∩X2) 6= X ′∩(H∪B) such thatX ′ |= PY , and thus (X ′, Y ) ∈ SE (P ). Consider an
〈H,B〉-optimal SE-interpretation (Xopt , Y ) in SE (P ) having these properties. Then,
since (Z,Z) ∈ HEHB (P ), we get by Lemma 1 that (Xopt ∩ (H ∪ B), Y ) ∈ HEHB (P ).
We end up in a contradiction, as Xopt ∩ (H∪B) ⊂ Y , (X1 ∩X2 ∩H) ⊆ (Xopt ∩H),
and (Xopt ∩ B) ⊆ (X1 ∩X2 ∩ B). Hence, HEHB (P ) is 〈H,B〉-HI-closed. ut

As shown next, for an 〈H,B〉-complete set S of SE-interpretations that is 〈H,B〉-
HI-closed, cH,B(S) is the set of SE-models of a normal logic program. New non-total
SE-interpretations are introduced in cH,B(S) that, as we will see below, guarantee that
cH,B(S) is HI-closed.

Lemma 5. Let H,B be sets of atoms and S a set of SE-interpretations. If S is 〈H,B〉-
HI-closed, then cH,B(S) is HI-closed.

Proof. Let S be 〈H,B〉-HI-closed. Consider some (X1, Y ), (X2, Y ) ∈ cH,B(S). We
show that (X1 ∩X2, Y ) ∈ cH,B(S). First, consider the case that X1 = Y or X2 = Y .
Without loss of generality, assume X2 = Y . Then, we have (X1 ∩X2, Y ) ∈ cH,B(S)
since X1 = (X1 ∩ X2). Now assume X1 ⊂ Y and X2 ⊂ Y . From S being 〈H,B〉-
HI-closed, it follows that there is some X ′ ⊂ Y such that (X ′, Y ) ∈ S , (X1 ∩ X2 ∩
H) ⊆ (X ′ ∩ H), and (X ′ ∩ B) ⊆ (X1 ∩ X2 ∩ B). From Definition 4, we conclude
(X1 ∩X2, Y ) ∈ cH,B(S). ut

We now state our main result for casting toNLP under hyperequivalence. Its proof
follows the general argumentation for establishing (?) in the beginning of this section,
using the preceding results.

Theorem 6. For setsH,B ⊆ At and a DLP P over At , there exists an NLP Q over At
such that P ≡HB Q iff HEHB (P ) is 〈H,B〉-HI-closed.

Example 4. Reconsider program P1 from Example 1 and recall that there is no NLP
that is strongly equivalent to P1. We now weaken the notion of equivalence, by banning
b from the bodies of rules in potential context programs. So, for sets H = {a, b, c} and
B = {a, c}, we have HEHB (P1) = {(b, b), (b, ab), (ab, ab), (ac, ac), (b, bc), (bc, bc),
(b, abc), (ab, abc), (ac, abc), (bc, abc), (abc, abc)}. As HEHB (P1) is 〈H,B〉-HI-closed,
there is an NLP that is 〈H,B〉-equivalent to P1, e.g., P ′1 = {a ← not b; b ←
not a; b← not c; c← not b}.



4.3 Elimination of Negation

Similarly to closure under here-intersection, we now generalise the notion of here-
totality.

Definition 6. Let H,B be sets of atoms. A set S of SE-interpretations is 〈H,B〉-here-
total if, for any pair (X,Y ) ∈ S with X ⊂ Y , there is some X ′ ⊂ Y such that
(X ′, X ′) ∈ S and X = X ′ ∩ (H ∪ B).

Concerning condition φHB,C(·) from the beginning of this section, its realisation in case
C = PLP is now given by conjoining 〈H,B〉-completeness and 〈H,B〉-here-totality.

Theorem 7. LetH,B ⊆ At be sets of atoms and P a PLP over At . Then, HEHB (P ) is
〈H,B〉-here-total.

For casting a DLP to PLP , another kind of completion is needed. We aim at map-
ping an 〈H,B〉-complete set of SE-interpretations being 〈H,B〉-here-total to a complete
set of SE-interpretations that is here-total.

Definition 7. For any set S of SE-interpretations, let ĉ(S) be given by {(X,Y ) | X ⊆
Y, (X,X), (Y, Y ) ∈ S}.

Note that ĉ(·) represents the completion transformation τHB,C(·) for C = PLP .
The main result for casting DLPs to PLP is formulated as follows:

Theorem 8. Let H,B ⊆ At be sets of atoms and P a DLP over At . Then, there exists
a PLP Q over At such that P ≡HB Q iff HEHB (P ) is 〈H,B〉-here-total.

Example 5. Again, consider program P1 from Example 1 and recall that there is no
PLP that is strongly equivalent to P1. For sets H = {a} and B = {a, c}, we have
HEHB (P1) = {(b, b), (∅, ab), (ab, ab), (ac, ac)}. HEHB (P1) is 〈H,B〉-here-total, and
thus there is a PLP that is 〈H,B〉-equivalent to P1, e.g., P ′′1 = {a ∨ b←; b ∨ c←}.

4.4 Joint Elimination of Disjunction and Negation

The characterising property of DLPs being castable to HORN is independent of the
body alphabet. In conjunction with 〈H,B〉-completeness, it constitutes φHB,HORN (·).

Definition 8. For a set H of atoms, a set S of SE-interpretations is H-closed under
there-intersection, or H-TI-closed, if, whenever (X,X) ∈ S and (Y, Y ) ∈ S, there is
a (Z,Z) ∈ S such that Z ⊆ (X ∩ Y ) and (Z ∩H) = (X ∩ Y ) ∩H.

Theorem 9. Let H,B ⊆ At be sets of atoms and P a Horn program over At . Then,
HEHB (P ) isH-TI-closed.

The completion transformation for casting to HORN , defined next, reuses the
completion ĉ(·) from Definition 7. However, a refinement is necessary for guaranteeing
closure under there-intersection of the respective mapping.

Definition 9. Let H ⊆ At be a set of atoms. For every set S of SE-interpretations, let
c̃H(S) be given by ĉ({(Z ′, Z ′) | (Z,Z) ∈ S, Z ⊆ Z ′ ⊆ At , (Z ′ ∩H) = (Z ∩H)}).



As in the previous cases, c̃H(·) represents τHB,C(·) for C = HORN . As well, in Sec-
tion 5 we will summarise the role of the completion transformations cH,B(·), ĉ(·), and
c̃H(·) for computing a casting of a given program.

Theorem 10. Let H,B ⊆ At be sets of atoms and P a DLP over At . Then, there
is a Horn program Q over At with P ≡HB Q iff HEHB (P ) is 〈H,B〉-here-total and
H-TI-closed.

Example 6. Consider program P2 from Example 1 and recall from Example 3 that
there is no Horn program strongly equivalent to P2. For sets H = {a, c} and B =
{a, b, c}, we have HEHB (P1) = {(∅, ∅), (∅, ab), (ab, ab), (∅, bc), (bc, bc)}. HEHB (P2) is
〈H,B〉-here-total and 〈H,B〉-TI-closed. Thus, there is a Horn program that is 〈H,B〉-
equivalent to P2, e.g., P ′2 = {b← a; b← c; ← a, c}.

4.5 Special Cases

We briefly discuss our results with respect to important corner cases of hyperequiv-
alence. Naturally, for strong equivalence, the introduced characterisations reduce to
the notions presented in Section 3. Hence, we provided proper generalisations of the
concepts known for this special case. For identical head and body alphabets, hyper-
equivalence reduces to relativised strong equivalence as introduced by Woltran [13].
Interestingly, 〈A,A〉-closure under here-intersection reduces to ordinary closure under
here-intersection for 〈A,A〉-well-defined sets of SE-interpretations. Consequently, for
relativised strong equivalence, we get the following refinement of Theorem 6:

Theorem 11. Let A ⊆ At be a set of atoms and P a DLP over At . Then, there exists
an NLP Q over At such that P ≡AA Q iff HEA

A(P ) is HI-closed.

5 Computational Aspects of Program Casting

In this section, we first summarise how program castings can be computed, and after-
wards we discuss the complexity of casting under hyperequivalence.

LetH,B ⊆ At be sets of atoms. For obtaining an 〈H,B〉-casting of a given DLP P
over At to class C with (i) C = NLP , (ii) C = PLP , or (iii) C = HORN , respectively,
where P is castable to C under 〈H,B〉-equivalence, one can proceed as follows:

1. Compute HEHB (P ).
2. Depending on the class C of programs, compute (i) S = cH,B(HEHB (P )), (ii) S =

ĉ(HEHB (P )), or (iii) S = c̃H(HEHB (P )).
3. Compute the canonical program CPS for S.
4. Apply techniques to remove (i) disjunctions, (ii) negations, or (iii) negations and

disjunctions from CPS , preserving strong equivalence, as discussed in Section 3.

For analysing the complexity of CAST(C) for C ∈ {NLP,PLP, HORN}, we
need the following membership result for 〈H,B〉-model checking.

Theorem 12. The problem of deciding whether (X,Y ) ∈ HEHB (Q), for givenX,Y,H,
B ⊆ At and DLP Q over At , is in ∆P

2 .



The following relationship between 〈H,B〉-models and SE-models is essential for
efficiently checking whether a DLP can be replaced by a hyperequivalent NLP.

Lemma 6. Let X,Y,H,B ⊆ At be sets of atoms, and P a DLP over At such that
X ⊆ (H ∪ B). If (Y, Y ) ∈ HEHB (P ), then the following statements are equivalent:

– there is some X ′ ⊂ Y with (X ′, Y ) ∈ HEHB (P ), (X ∩ H) ⊆ (X ′ ∩ H), and
(X ′ ∩ B) ⊆ (X ∩ B);

– there is some X ′′ ⊂ Y with (X ′′, Y ) ∈ SE (P ), (X ∩ H) ⊆ (X ′′ ∩ H), and
(X ′′ ∩ B) ⊆ (X ∩ B).

Theorem 13. Deciding CAST(NLP) isΠP
2 -complete. Moreover, the problem remains

ΠP
2 -hard if we restrict it to instances whereH = B holds.

Proof (Sketch). For membership, we show that the complementary problem, i.e., de-
ciding whether HEHB (P ) is not 〈H,B〉-HI-closed, is in ΣP

2 . Note that HEHB (Q) is
〈H,B〉-HI-closed iff HEHB (Q) ∩ (atm(Q) × atm(Q)) is 〈H,B〉-HI-closed. We can
nondeterministically guess some X1, X2, Y ⊆ atm(Q). By Theorem 12, a polyno-
mial number of NP-oracle calls suffice to decide whether (X1, Y ) ∈ HEHB (Q) and
(X2, Y ) ∈ HEHB (Q). As a consequence of Lemma 6, an NP-oracle can be used to check
whether there is no X ′ ⊂ Y with (X ′, Y ) ∈ HEHB (Q), (X1 ∩X2) ∩ H ⊆ (X ′ ∩ H),
and (X ′ ∩ B) ⊆ (X1 ∩X2) ∩ B. Thus, a nondeterministic algorithm with access to an
NP-oracle solves the complementary problem in polynomial time.

We show hardness by a reducing the problem of deciding the truth of a quantified
Boolean formula (QBF) to checking whether HEHB (P ) is not 〈H,B〉-HI-closed. Con-
sider a QBF Φ = ∃K∀Lδ1 ∨ · · · ∨ δr, where each δi is a conjunction of literals over
K ∪ L. We assume that K 6= ∅ and L 6= ∅. For every x ∈ K ∪ L, we denote by x
a globally new atom not appearing anywhere in φ. Given a set X of atoms, we define
X = {x | x ∈ X}. Finally, for each conjunction δ = a1 ∧ · · · ∧ ah ∧ ¬ah+1 ∧ ¬an
of literals, we denote by δ† the sequence a1, . . . , ah, ah+1, . . . , an and define program
PΦ, using further new atoms a, b, w, as follows.

PΦ = {k ← not k; k ← not k; ← k, k | k ∈ K} ∪
{l ∨ l←; w ← l, l; l← w; l← w; | l ∈ L} ∪
{a ∨ b← δ†i ; w ← δ†i ; | 1 ≤ i ≤ r}.

For A = K ∪K ∪ {a, b}, it can be shown that Φ is true iff HEA
A(PΦ) is not HI-closed,

and therefore, by Theorem 11, not 〈A,A〉-HI-closed. Since deciding the truth of a QBF
of form Φ is ΣP

2 -hard, the assertion follows from that. ut
It was shown [8] that there is no rewriting f from DLPs to NLPs such that P ≡At

∅
f(P ), where f(P ) is polynomial in the size of P , for every program P , unless the
polynomial hierarchy (PH) collapses. Hence, there is also no polynomial rewriting from
DLPs to NLPs for the general case of hyperequivalence, unless the PH collapses.

It turns out that checking whether a DLP can be replaced by a hyperequivalent PLP
is computationally more expensive than deciding whether there is a corresponding NLP.

Theorem 14. Deciding CAST(PLP) is ΠP
3 -complete. Moreover, the problem remains

ΠP
3 -hard if we restrict it to instances where B ⊆ H holds.



Proof (Sketch). We only show the hardness part. Consider a QBF Φ = ∃K∀L∃Mφ,
where φ is a formula in CNF over the set K ∪L∪M of atoms. We assume that K 6= ∅,
L 6= ∅, and M 6= ∅. As before, for every x ∈ K ∪ L ∪M , we denote by x a globally
new atom not appearing anywhere in φ, and we define X = {x | x ∈ X} for every set
X of atoms. Finally, for each clause γ = x1∨ · · ·∨xk ∨¬xk+1∨ · · ·∨¬xn, we denote
by γ‡ the sequence x1, . . . , xk, xk+1, . . . , xn, and define a program PΦ, using a further
new atom w, as follows:

PΦ = {j ∨ j ←; o← j, j; o← j, j | j ∈ K ∪ L, o ∈ K ∪ L ∪M} ∪
{m ∨m←; w ← m,m; m← w; m← w | m ∈M} ∪
{w ← γ‡ | for each clause γ in φ} ∪ {w ← not w}.

For B ⊆ H = K ∪K, it can be shown that Φ is true iff HEHB (PΦ) is not 〈H,B〉-here-
total. As deciding the truth of a QBF of form Φ is ΣP

3 -hard, the assertion follows. ut

Theorem 15. Given set At of atoms, there is no rewriting f : DLP×At×At → PLP
such that, for given sets H,B ⊆ At of atoms and a DLP P that is castable to PLP ,
P ≡HB f(P,H,B) and f(P,H,B) is polynomial in the size of P , unless the polynomial
hierarchy collapses. The result also holds under the restriction B ⊆ H.

Proof. Let H,B be sets of atoms such that B ⊆ H. Assume that a polynomial-size
rewriting f of the described kind exists. We can guess a PLP P ′, polynomial in the size
of P , in nondeterministic polynomial time. Since checking P ′ ≡HB P is in ΠP

2 [5], a
nondeterministic algorithm with access to a ΣP

2 -oracle can decide CAST(PLP). This
yields membership of CAST(PLP) inΣP

3 , which is a contradiction to theΠP
3 -hardness

of the problem, unless the polynomial hierarchy collapses. ut

Finally, we have the following result for the Horn case:

Theorem 16. Deciding CAST(HORN ) is in ΠP
3 .

6 Discussion

We studied casting of disjunctive answer-set programs under hyperequivalence and
provided necessary and sufficient semantical conditions, deciding for a program P ,
whether there exists a program Q of a given syntactic subclass of DLPs which is hyper-
equivalent to P . Moreover, we provided methods for constructing such a Q and studied
the complexity of deciding whether casting can be applied. Here, an open issue is de-
termining exact complexity bounds for CAST(HORN ).

Other open issues concern the canonical program we used to obtain our results. First
of all, it would be valuable to have canonical programs which are “class sensitive”, i.e.,
given a set S of SE-interpretations, the associated canonical program is one which is
exactly in that class which is characterised by S. This would circumvent the fourth and
last step of our program casting algorithm as sketched in Section 5. Secondly, having
a canonical program directly for HE-models rather than for SE-models would further
simplify the task.



An interesting application of casting under hyperequivalence is modular program-
ming, when modules are to be replaced by syntactically simpler programs. As it is
typically known which atoms are allowed to occur in the heads and bodies of rules in
context modules, adequate casting can be applied even when impossible under strong
equivalence. Furthermore, casting under hyperequivalence gives insight into when a
syntactical class is intrinsically needed, or contrarily, when connectives like disjunc-
tion and negation are dispensable. By varying the hyperequivalence parameters, atoms
which are responsible for the need of a connective can be identified. Based on the no-
tions developed, in a next step, properties can be extracted which allow for constructing
methods for determining the strongest equivalence notion under which casting is possi-
ble. That is, for a given program P and syntactic class C, find H and B such that P is
castable to C under 〈H,B〉-equivalence andH and B satisfy some optimality condition.

Another crucial matter for future work is research into casting with equivalence
under projection [12], where answer sets need to be identical only on selected atoms.
Usually, one is interested in the behaviour of a program with respect to distinguished
input and output atoms. By varying parameters H and B, 〈H,B〉-equivalence allows
for specifying the input part. Projection, on the other hand, is needed for determining
output atoms. Once conditions for casting with projections are defined, it can be decided
whether the respective task allows for replacing a program by a simpler one.
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