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Abstract nary performance evaluation of the new component.

The systerac T is a tool for testing correspondence be- ]
tween nonmonotonic logic programs under the answer-setl. Introduction
semantics with respect to different refined notions of pro-
gram correspondence. The basic architecturecofT is In this paper, we deal with a system for testing vari-
to reduce a given correspondence problem into the satis-ous refined notions of program correspondence for non-
fiability problem for quantified propositional logic and to monotonic logic programs under the answer-set semantics.
employ off-the-shelf solvers for the latter language askbac The latter formalism has been proven useful in a vari-
end inference engines. In a previous incarnatiorc ofT, ety of domains including planning, diagnosis, information
the system was designed to test correspondence betwedhtegration, and Semantic-Web reasoning, and represents
logic programs based orelativised strong equivalence un- the canonical instance of the geneaakswer-set program-
der answer-set projectionSuch a setting generalises the ming (ASP) paradigm an important approach for declara-
usual notion of strong equivalence by taking the alphabet of tive problem solving.
the context programs as well as the projection of the com-  The system discussed here, calledT (standing for
pared answer sets to a set of designated output atoms intg'correspondence-checking tool”) [12], belongs to a cutren
account. In this paper, we describe an extensiog ©f line of research in ASP about questions of program equiv-
for testing similarly parameterised correspondence prob- alence relevant for different software engineering taises |
lems but generalisingniform equivalencewhich have re-  modular programming and debugging. This research was
cently been introduced in previous work. Besides reviewingfor the most part initiated by the seminal work of Lifschitz,
the formal underpinnings of the new componertof ,we ~ Pearce, and Valverde [11] abostrong equivalence Al-
discuss an alternative encoding as well as optimisations fo beit the latter notion circumvents a shortcoming of ordi-
special problem classes. Furthermore, we give a prelimi- nary equivalence between logic programs (viz., that ordi-
nary equivalence does not yield a replacement property sim-
ilar to the one of classical logic), it is however too restric
*The authors of this work were partially supported by the Aast tive for certain applications. This led to the investigataf
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supported by the Austrian Federal Ministry of Transportnadvation, more liberal notions, chiefly among themiform equiva
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(FFG) under grant FIT-IT-810806. do not take standard programming techniques like the use
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Figure 1. Overall architecture of ccT.

of local (auxiliary) variables into account, which may oc- considered as queries over databases). Like for theirgstron
cur in some subprograms but which are ignored in the final pendants, checking PQEPs and PQIPs is computationally
computation. In other words, these notions do not admit thehard, lying on the third level of the polynomial hierarchy,
projectionof answer sets to a set of dedicated output atoms.therefore a similar reduction approach to QBFs is viable.
To accommodate issues like the above, Etal.[7] in- Indeed, such reductions are described in previous work [14]
troduced a general framework for specifying parameterisedand the new component afc T is based on these reduc-
notions of program correspondence, allowing both answer-tions, which we review in this paper.
set projection as well as the specification which kind of ~ The overall architecture afc T is depicted in Figure 1.
context class should be used for the program comparisonlt takes as input two program®,and(), as well as the con-
This framework thus generalises not only strong and uni- text set4 and the projection sdg. This input is then trans-
form equivalence but alseelativisedversions thereof [18]  formed into a QBF which can then handed to QBF solvers.
(where “relativised” means that the alphabet of the context Validity of the resulting QBF reflects the outcome of the
class is an additional parameter). original problem, which holds when, for any sBt C A
The systemcc T was developed as a checker for the of facts, the answer sets fU R andQ U R projected to
type of correspondence problems which were the main fo- B coincide (in case of a PQEP) or when the answer sets
cus of the analysis of Eitet al.[7], viz. for correspondence  of P U R projected toB are included in the answer sets of
problems generalising strong equivalence. The main ap-Q U R projected taB (in case of a PQIP) Since the QBFs
proach otcc T to verify these kinds of problemsis to reduce generated bycT are not in a particular normal form, for
them to the satisfiability problem of quantified propositibn ~ solvers requiring normal-form QBFs, a corresponding nor-
logic.! Such a reduction approach is motivated by two as- maliser,gst [19], is needed.
pects: (i) the high complexity of the considered problems—  In complementing the reductions given by Oetsgth
lying on the fourth level of the polynomial hierarcny— al. [14], we provide refined reductions for PQEPs and
makes it in general presumably infeasible to compute themPQIPs which use less variables than the original ones. Fur-
by means of answer-set solvers, yet efficient encodings tothermore, we discuss simplified transformations for specia
quantified propositional logic are possible, and (ii) the ex problem classes. All these transformations have been im-
istence of sophisticated solvers for quantified propasitio ~ plemented in an extension ot T. We round off our dis-
logic. cussion by reporting about a preliminary experimental-eval
In this paper, we discuss an extensiorofT for check- uation of the extension afc T using different state-of-the-
ing further classes of correspondence problems from theart QBF solvers.
framework of Eiteret al. [7], viz. problems generalising
uniform equivalence These kinds of problems were re- 2. Preliminaries
cently analysed in previous work [14] and are calieopo-
sitional query equivalence problerBQEPS) angroposi-  Answer-set semantics. We are concerned withroposi-

tional query inclusion problem@QIPs) (the names stem tjonal disjunctive logic program¢DLPs) which are finite
from taking a database point of view in which programs are gets of rules of form

1Recall that quantified propositional logic is an extensibmmlinary a1V ---NVap < 1, -y Gy, N0t Ay, - - ., NOL Ay, (1)
propositional logic allowing quantifications over atomarrhulas. Fol-
lowing custom, we refer to formulas of quantified proposiéiblogic as 2|n the notions generalising strong equivalenBeyould be a program

quantified Boolean formula@BFs). overA.



wheren >m >12>0, all a; are propositional atoms from
some fixed universd, and ‘not” denotesdefault negation
Rules of forma — arefactsand are usually written with-
out the symbol £-". We denote byA¢(P) the set of all
atoms occurring in a prograifi, and say thaf’ is over A
if At(P) C A. P4 refers to the set of all programs ovér
and2“ to the set of all facts ovet. By aninterpretationwe

for ® € {C, =}, takingprojectionto a dedicated s&B of
output atoms into account. The former kinds of problems
were analysed by Eitest al. [7] while the latter ones by
Oetschet al. [14]. Here, we are interested in those latter
kinds of problems and, like in previous work [14], we call
problems of form(P, Q, 24, Cp) propositional query in-
clusion problemsor PQIPsfor short, and problems of form

understand a set of atoms, and, as usual, an interpretation i(P, Q, 2*, =5) propositional query equivalence problems

amodelof a ruler iff it satisfies the head of whenever it
satisfies the body of. The notion of a model extends to
programs in the usual way and is denoted/by= P. Fol-
lowing Gelfond and Lifschitz [8], an interpretatidnis an
answer sebf a programP iff it is a minimal model of the
reduct P!, resulting fromP by (i) deleting all rules con-
taining a default negated atomot o such thatw € I, and
(ii) deleting all default negated atoms in the remainingsul
The collection of all answer sets of a prograhis denoted
by AS(P).

Program correspondence. We use the following nota-
tions in the sequel: For an interpretatiérand a setS of
interpretationsS|; is definedaY N7 | Y € S}. Fora
singleton setS = {Y'}, we also writeY'|; instead ofS|;.
Furthermore, for set§, S’ of interpretations, an interpreta-
tion B, and® € {C,=}, we defineS©5 S’ asS|p © 8’| 5.

Some basic equivalence notions are defined as follows

Two programsP and @ are (i) ordinarily equivalentiff
AS(P) = AS(Q); (ii) uniformly equivalen(6] iff, for each
setF of facts,AS(PUF) = AS(QUF); and (iii) strongly
equivalent[11] iff, for each programR, AS(P U R) =
AS(QUR).

In abstracting from these notions, Eitet al. [7] in-
troduced the notion of @orrespondence problemvhich
allows to specify (i) acontexf i.e., a class of programs

used to be added to the programs under consideration, an
(i) the relation that has to hold between the answer sets
of the extended programs. The concrete formal realisa-

tion is as follows. A correspondence probleavéri/{) is

a quadrupldI = (P,Q,C, p), whereP, @ € P, are pro-
grams,C C P, is a class of programs (theontext class
of I), andp C 22 x 22" is a binary relation over sets
of interpretations.IT is said tohold iff, for each program
R eC,(AS(PUR),AS(Q U R)) € p. By instantiating
C and p, different equivalence notions from the literature
can be expressed. In particuld,and @ are (i) strongly
equivalent iff (P, Q, Py, =) holds, (ii) uniformly equiva-
lent iff (P,Q, 2, =) holds, (iii) strongly equivalent rela-
tive to A [18], for A C U, iff (P,Q,Pa,=y) holds, and
(iv) uniformly equivalent relative tod [18], for A C U, iff
(P,Q,24,=y) holds.

Some important further kinds of correspondence prob-
lems that generalise the above ones are those of form

(P,Q,P4,®p) and of form(P,Q,24, ®p), respectively,

or PQEPs

A pair (X,Y) with X C AandY C U is called acoun-
terexampléfor a PQIP(P, Q,24,Cp)iff Y € AS(PUX)
and noY”’ with Y'|p = Y|p is contained inAS(Q U X).
Hence, a PQIAI has a counterexample iffl does not
hold [14].

Example 1 ConsiderP = {a Vb «—;a <« c}, Q =
{a < not b;b — not a;c — a}, andB = {a,b}. Since
AS(P) = {{a}, {b}} and AS(Q) = {{a.c}, {b}}, we get
AS(P)|lg = AS(Q)|s = {{a},{b}}. Now, forA = B,
(P,Q,24,Cp) holds, while forA’ = {a,b,c} the PQIP
Il = (P,Q,2",Cp) does not hold. This is witnessed by
({b, c}, {a, b, c}) which is the unique counterexamgéver
{a, b, c}) for II. O

For a PQEPII = (P,Q,2%,=5), the PQIPSIT™ =
(P,Q,24,Cp) andII~ = (Q, P,24,Cp) are calledas-

'sociatedwith TI. Obviously, a PQERI holds iff bothII™

andII hold. We extend the definition of a counterexam-
ple to PQEPs and call a pdiX, Y') a counterexample for a
PQEPIIif (X,Y) is a counterexample fal— or IT*".
Concerning complexity, as shown previously [14], given
programsP,Q € Py, setsA,B C U of atoms, and
® € {C,=}, deciding whethe(P, Q,24,®) holds is
1Y -complete. Moreover, the problem I8}’ -complete in

@aseB = U. Both hardness results hold even for arbitrary

ut fixed A.

Quantified propositional logic. The complexity results
above show that PQIPs and PQEPs can be efficiently re-
duced toquantified propositional logican extension of
classical propositional logic in which formulas are permit
ted to contain quantifications over propositional variable
Similar to predicate logicd andV are used as symbols
for existential and universal quantification, respectivel
Such formulas are also callegiantified Boolean formulas
(QBFs); we denote them by upper-case Greek letters.

For an interpretatiod and a QBF®, the relation/ = ®
is defined analogously as in classical propositional logic,
with the additional conditions thal = Ip ¥ iff I =
Ulp/TlorlI E ¥[p/Ll],andl E Vp U iff T = Ulp/T|
and! E U[p/1], for ® = Qp ¥ with Q € {3,V}, where

3Note that in our previous work [14] we used “explicit courteample”
instead of “counterexample”.



U[p/¢] denotes the QBF resulting frodnby replacing each
free occurrence g in ¥ by ¢ (an occurrence of an atom
p is freein a QBF @ if it does not occur in the scope of a
quantifierQp in ®). A QBF @ is true under[ iff I = ®,
otherwised is false underl. A QBF is satisfiableiff it is
true under at least one interpretation. A QBKadid iff it is
true under any interpretation. Note thatlasedQBF, i.e., a

3.1. Translating query problems

In what follows, we make use of sets of globally new
atoms in order to refer to different assignments of the same
atoms within a single formula. More formally, given a $et
of atoms, we assume (pairwise) disjoint copi€s= {v® |
v € V}, for everyi > 1. Furthermore, we introduce the

QBF without free variable occurrences, is either true under following abbreviations:

any interpretation or false under any interpretation.
Given a finite sef’ of atoms,QP W stands for any QBF
Qp1Qpa ... Qp,¥ such thatP? = {py,...,p,}. AQBF ®
is said to be inprenex normal form(PNF) iff it is closed
and of the formQ,, P, ... Q1P ¢, wheren > 0, ¢ is a
propositional formula, an®@; € {3,V} such thatQ; #
Q;+1 for 1 < i < n — 1. Moreover, if¢ is in conjunctive
normal form, thend is in prenex conjunctive normal form
(PCNF), and if¢ is in disjunctive normal form, the® is
in prenex disjunctive normal fortPDNF). A QBF® =
Q.P,...Q1P ¢is also referred to as dm, Q,, )-QBF.
Any closed QBF® is easily transformed into an equiv-

L (VISVI) = Nper (0" —07);
2. (Vi< Vi) = (VE<VI)A=(VI < VP); and
3. (Vi=VH=(VIi<VI)A(VI<VY.
Observe that the latter is equivalentAg ., (v' < v7).

These operators allow to compare different subsets of
atoms from a common sét under subset inclusion, proper-
subset inclusion, and equality, respectively. Formallg, w
have that, givedX, Y C V, an interpretatiod with |y =
XtandI|y; = Y7is (i) amodel of V! < VIiff X C Y,

(i) a model of V¥ < V7 iff X C Y, and (iii) a model of

alent QBF in prenex normal form such that each quantifier V: = V7 iff X =Y.

occurrence fromb corresponds to a quantifier occurrence
in the prenex normal form. In general, there are differ-
ent ways to obtain an equivalent prenex QBF (cf. Eefly
al. [4] for more details on this issue). Well-known complex-
ity results for the evaluation problem of QBFs [16] indicate
that PQIPs and PQEPSs can be efficiently reduce@ tg)-

We use superscripts as a general renaming schema for
formulas and rules. That s, for eack 1, o' expresses the
result of replacing each occurrence of an atom « by v,
whereq is any formula or rule. For a ruteof form (1), we
defineH(r) = a1 V---Va;, BY(r) = ajz1 A+ A am,
and B~ (r) = —am+1 A -+ A —a,. We identify empty

QBFs. These reductions are the central theoretical basis fodisjunctions with | and empty conjunctions witfi.

our system and are discussed in detail in the next section.

3. System specifics

We now discuss details of the new extensior ofl” for

verifying PQIPs and PQEPs. The overall architecture of
ccT was already outlined in the introduction and depicted

in Figure 1. Originally,cc T was developed as an imple-
mentation for verifying correspondence problems of form
(P,Q,Pa,op), for® € {C,=}[12]. The syntax to spec-
ify programs incc T corresponds to the badit V syntax?
Furthermore, the tool is entirely developedANSI G us-
ing LEX and YACCfor the parser, and publicly available

(including the source code); it can be downloaded from the

Web at

http://ww. kr.tuw en. ac. at/research/ccT.

The section is organised as follows. First, we review the
basic encodings for mapping PQIPs and PQEPs into QBFs,

as developed in previous work [14]. Afterwards, we pro-

vide an alternative reduction and discuss its outcome on
special instances of correspondence problems. Finally, we

give some details on how to apply the system.

4Seeht t p: / / www. dl vsyst em coni for more information about
DLV.

Proposition 1 ([17]) Let P be a program withA¢(P)
V, I an interpretation, andX,Y C V such that, for some
i,j > 0,1y = X*andI|y; = Y7. Then, X = PY iff
I = P{%9), where

PO = A ((BY(r) AB~ (7)) — H(r")).
repP

Example 2 Consider the progran® = {a < not b; b —
not a}. Then, for instance) (-2 is given by(—b> — a') A
(—a? — b'), and we have thafa?, b*} U X! is a model of
Q{12), for eachX® C {a',b'}, reflecting the fact that any
interpretationX is a model of the reduep{e-*}. O

With these building blocks at hand, we can state the fol-
lowing encoding, as introduced by Oetsattal [14].

Definition 1 LetIl = (P,Q,2%,Cg) be a PQIP,At(P U
Q) =V,andA, B C V. Then,

S[I] = &y AVV*((B* = B) — V), where
Dir = P A (42 < AY) AWV (((42 < 49N
(V3 <vl) — ﬂP<3=1>) and
((Q<4v4> A (A2 < AY) — 3V5(((A% < AP)A
(V3 < V) A Q<5v4>)).

W



Table 1. Outcome of the different encodings of IT = (P, Q, 24, Cp) from Example 1.
S[] T[]

P AVa'b'c*((a® = a") A (BT = b)) — o AV
(((ﬂb4 — a*) A (ma* = bY) A (a* — A (((ﬂb1 —a') A (mat — bH) A (et — cHA

(a* — a*) A (b* — b)) — Fa®b°c® (a* — a') A (B2 — b)) — Fa®b5c®
((a® = a®) A (B = B7)A ((a® = a®) A (B = B7)A
(a® = a*) A(B® = b A (C5HC4)A (a® = a ) A(B® =Y A (S Hc‘l)/\
(@t = @) A = D) A (= EDA | (@t — @) A B =B A E)A
(2b* = a®) A (ma* = B°) A (a® = ))) | (2b! = a®) A (ma' — b) A (a® — )
Observe that the free variables®f1] are given by ! U For illustration, Table 1 depicts the different outcomes of
A2, Assignments td&/! U A2 yield the counterexamples for  the two encodings for the PQIR = (P, Q,24, C ) from
I1, in caseS[I]] is satisfied by those assignments. Example 1 withA = B = {a, b}.

Proposition 2 ([14]) LetII = (P, Q,24,Cp) be a PQIP,
AH(PUQ) =V, ABCV,X C A andY C V.
Then,(X,Y) is a counterexample fofl iff Y! U X?
S[II]. Moreover, IT holds iff the closed QBRS[II] =
VVIVAZ-S[M] is valid.

Lemma 1 For any PQIPTI, the QBFsS[II] and 7 [II] are
logically equivalent.

As an immediate consequence, we thus obtain the fol-
lowing results.

The extension of the encodings to PQEPs is done by
means of the associated PQIPs. Theorem 1 LetIl = (P,Q,24,Cp) be a PQIP,At(P U

.. Q)=V,ABCV,XCA ,andY CV.Then,(X,Y)is

Proposition 3 ([14]) LetII = (P,Q,24,=p) be a PQEP, a ():ounterexample far iff Y U X? = 7[0]. Mo(reove)r,H
APUQ) =V, A, BCV, X C A andy CV. Then, i ihe closed QBR[TT] — vV1VA2—~7IT] is valid,
(X,Y) is a counterexample fdil iff Y' U X* = S[IT] v

S[II~]. Moreover]I holds iffS[IT] = YV1VA%(=S[I~] A

_ A _
~S[IT—]) is valid. Theorem 2 LetIl = (P, Q,24,=5) be a PQERPAt(P U

Q) =V,ABCV, X CA andY C V. Then,
(X,Y) is a counterexample fdd iff Y1 U X2 = T[I1~] v
T [I1~]. Moreover[I holdsiiff T[IT] = VVVA%(=7 [II7] A
~T[II]) is valid.

3.2. An alternative encoding and special
cases

We now introduce an adaption of the above encodings.
The benefit of the refined encodings is that the number of
universally quantified variables is reduced—in fact, in som
specific cases, one quantifier block even vanishes. This
guarantees adequacy (in the sense of Besgtaall[1]) also
for special cases of query problems without projection.

The key observation for the subsequent adaption is that
we use dixed assignmerfor atoms, in view of the subfor-
mula B* = B! of Definition 1. Hence, for the quantifier

Obviously, these encodings, as well as the ones from the
previous section, are (i) always linear in the sizé’of), A,
and B, and (ii) possess at most two quantifier alternations
in any branch of the formula tree. The latter shows that any
such encoding is easily translated int@3aV)-QBF. Thus,
the complexity of evaluating these QBFs is not harder than
the complexity of the encoded decision problems, which
shows adequacy in the sense of Besraral. [1].

block'vV*, it is sufficient to take only atoms frofi* \ B* We proceed with a discussion how our new reduction can
into account and replace all occurrences of atefng B* be simplified for special cases. Recall that by a proper pa-
by ! within the remaining part of the formula. The modi- rameterisation of a PQIP (resp., PQEP) also some important
fied translation is given as follows. special cases of correspondence checking can be realised.
Definition 2 LetIl = (P,Q,24,Cp) be a PQIPAL(P U AII simplificat_ions outlined below have been implemented
Q) =V, andA B C V. Then, in our extension otcT.

_ 4 4 4 1
T} = &n AV(VEA BY) n[B7/ B, Ordinary inclusion with projection. For problems of

where ®; and U; are defined as in Definitiorl and form (P,Q,24,Cp) with A = () we get that all terms
U [B*/B'] denotes the QBF resulting frol by replac-  (A* < A7) are trivially true and can therefore be elimi-
ing all occurrences of atoms* € B* by v!. nated. Also, the free variables @f[II] reduce tol’!. We



obtain that7 [II] is equivalent to the free variables of [I1] reduce toV!. Hence,7[I1] is
equivalent to
(PO AVVE((V? < V1) = <P A
(P AWVA((V? < V1) = <P A
(VA BY) (QU — 3vA(VE < V) A
(Q<1"1> SISV < VY /\Q<5’1>)).
Q<574>)) [34/31].
The QBF is true under interpretatioft if Y € AS(P) but
Still, on each branch of the formula tree there are at mostY ¢ AS(Q). Note that the structure of the closed QBF
two quantifier alternations witnessing thig, -complexity T[], given byVV1 (=T [II~] A =T [II]), then witnesses
of this special case. theIl{ -membership of ordinary equivalence.
As ordinary equivalence is a special case of relativised
uniform equivalence, we can obtain a further simplification

Relativised uniform inclusion. Next, we analyse spe-
yse sb in terms of7 °[I1]. Indeed 7 °[IT] reduces here to

cial settings without projection, i.e., problems of form
(P,Q,24, Cp) with B = U. Further special cases are then
obtained by settingd = @ and A = U, respectively. In
view of of theIl -complexity result for problems without
projection, we expect that the number of quantifier alterna-
tions in the resulting QBFs decreases by one. In faf])
simplifies to

(PUD AWV ((V < V1) = 2PED) ) A
(Q<1"1> - ((V2 < Vl) A Q<2"1>))-

Hence, we have shown that all special cases \Bith- I/
have in common that the encoding§] simplify to QBFs
with at most one quantifier alternation in each branch of the

P A (Q<1"1> - 3V5((A2 < AN ) formula, witnessing th&l’ -membership of those problems.

(VP < V) AQED)).
4. Experiments

Observe that the quantifier blogkV* \ B*) vanishes since

V \ B = 0. Thus, all atoms* in the encoding are re- In this section, we present a preliminary experimental

placed byv!. The structure of the formula now matches the evaluation of our implementation. The goal of the exper-

115’ -complexity result for relativised uniform inclusion. In- iments is to clarify the interplay of different QBF solvers,

terestingly, QBF (2) isatisfiability equivalento the even  different encodings, and different problem settings imter

simpler formula of run-time performance. In the spirit of previous exper-
. ) ) 1 iments withcc T [12], we use the reduction from QBFs
T°M] = @n A QMY — (V2 <VH AQPY), to PQIPs given by thdl}-hardness proof for deciding

N . PQIPs [14]. This provides us with a class of random bench-
where the quantifier blockV™ is removed as well. Ob- mark problems focc T which captures the inherent hard-
serve that satisfiability equivalence of the two formulas en ess of the problem. More precisely, the method is as fol-
tails that7 °[II] does no longer encoaddl counterexamples.  |g\ys:

However, the simplification if °[II] does not influence the

number of quantifier alternations. 1. generate a rando(8, V)-QBF ® in PDNF;
2. reduced to a PQIPIT = (P, Q,24, Cpg) such thafll
Uniform inclusion. For the case of (plain) uniform in- holds iff @ is valid [14];

clusion, i.e., problems of the formiP, Q,24,Cpg) with
A = B = U, no further simplification is obtained com- 3. a@pplycc T to derive the corresponding encodiigor
pared to (2), except that each occurrenceois now given IL.

by V. As uniform inclusion is a special case of relativised
uniform inclusion, also this QBF is satisfiability equivate
to 7 °[II].

Our benchmark set consists of 1000 instances. The ran-
domly generated QBFs of Step 1 contain 24 different atoms
each. From those 24 atoms, each quantifier block bounds
8 of them. Each term in the PDNF contains 4 atoms which
Ordinary inclusion. Finally, concerning ordinary inclu-  are selected by random from the 24 atoms and are negated
sion, i.e., problems of the forifP, Q, 24, Cp) with A = () with probability 0.5. The whole formula consists of 38
and B = U, we observe similar effects as in the encod- terms. From the 1000 instances, 506 evaluate to true and
ing for ordinary inclusion with projection. In particulai| 494 evaluate to false. Thus, the ratio between true and false
terms(A* < A7) can be eliminated because= (. Also, instances is close tb. Therefore, having easy-hard-easy



100.00 Sy — ccT encodes theomplementary problem.e., generates
90.00 - gﬂfﬁ ‘ QBFs of form—S|[-] or = T[] if projection is used. The rea-
80.00 |- S-ull m— - son is to avoid an additional quantifier alternation after th
7000 transformation to PCNF—details are discussed in previous

, 6000 work [13]

£ 5000 After that prenexing step, QBFs frosf] consist (on av-

P ol erage) of 1035 clauses over 632 atoms (for the empty con-
2000 {111 | text), 1203 clauses over 728 atoms (for the half-full con-

2000 Ll i text), and 1378 clauses over 828 atoms (for the full context)
oo LI w { For T[], the numbers are: 1003 clauses over 608 atoms (for

{NEnn ﬂu_" 1 the empty context), 1171 clauses over 704 atoms (for the
qube-bj semprop quantor apro half-full context), and 1346 clauses over 802 atoms (for the
full context).

All experiments were carried out on a 3.0 GHz Dual Intel
Xeon workstation, with 4 GB of RAM and Linux version
2.6.8.

Figure 2 summarises the results of the comparison. The
different QBF solvers, encodingS[(], T[-]), and settings
patterns in mind, we suppose the benchmark set to be lofor the context (empty, half-full, full, respectively) ageven
cated in a rather hard region. From ealghwe constructa  On the abscissa, and the median running times in seconds
PQIPII = (P,Q,2%, Cp) such that® is true iff Il holds. ~ are depicted on the ordinate.

Figure 2. Median running times for different
solvers, encodings, and problem settings.

Itis important to notice thaP, @), andB are determined by A very interesting observation is that the alternative en-
the reduction but the context can be chosen arbitrarily. coding T[] does not achieve faster running times for all
For our experiments, we use three different settings, solvers, although it uses less variables. Epro and
namely the empty context = (), the full context4 = U/, qube-bj, QBFs fromT[:] are solved—as one would

and an in-between settifyC A C /. For the last setting,  expect—faster. This is not the case f®enprop and
each atom occurring in one of the two program&nd Q quant or , wheresenpr op solves QBFs frons[] slightly

is in A with probability 0.5. We consider both encodings faster andjuant or solves such QBFs much faster (the bar
from PQIPs to QBFsS[.] and T[], together with the three ~ for quant or with full context and encoding[-] illustrates
settings for the context. The QBFs stemming frépipos-  that the median value is above 100).
sess 197 atoms each for the empty context; 221 atoms (on The next interesting point is the connection between run-
average) for the half-full context; and 246 atoms for thé ful ning time and context parameterisation. The non-normal-
context. For QBFs fronT[], the respective numbers are form solver gpr o achieves best results for the empty
189, 213, and 238. context but rather poor results for the full context. For
We compare the QBF solvesenpr op [10] (release  qube- bj the contrary is true, however, i.e., it achieves best
24/02/02),qube- bj [9] (v1.2), quant or [2] (release  results for the full context but poor results for the empty
25/01/04), andypr o [5]. We selected these solvers be- context—a quite surprising observation. Finally, the most
cause they proved to be competitive in previous QBF eval- robust solver in this aspect genpr op. Recall that each
uations and yielded only correct results on our benchmarks.of the derived PQIP&P, Q, 24, C ) either holds for any,
The solversypr o, qube- bj , andsenpr op are based on  or does not hold for anyl. The assignments of atoms from
the standard DPLL decision procedure extended by specialX ' in our encodings which “guess” context-program can-
learning techniques wheregaant or implements a com-  didates are thus completely irrelevant for the truth valtie o
bination of resolution and variable expansion. All solvers the QBFs. Now, agpr o does notimplement any heuristics
exceptgpr o require the input to be in prenex conjunc- concerning the selection of atoms, it is no longer surpris-
tive normal form. Thus, for those solvers, an intermediate ing that running times scale exponentially when the context
prenexing step is necessary. In general, this prenexipg ste gets larger. The heuristics realisedsenpr op seem to
is not deterministic and differengrenexing strategie§4] avoid that too much time is spend on finding assignments
are possible. However, for our instances, the structureeoft  for those “decoy” variables. On the other haqape- bj
prenex s fixed in such a way that avoiding an increase of thesuffers from the absence of those variables.
number of quantifier alternations during the transfornmatio Figures 3-6 provide some deeper insights concerning
to PNF can only be accomplished by placing each quanti-the running-time behaviour of the non-normal-form solver
fier into a uniquely determined quantifier block of the target qpr o and the normal-form solvesenpr op, qube- bj ,
(3,V)-QBF. It is worth mentioning that for both translations andquant or , respectively. For those figures, the abscissa
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the higher effort foqube- bj to solve them. The sharp in-

i h ing time i led | ithmicall o . Lo
gives the running time in seconds (scaled logarithmically) clination of the curves foguant or (Figure 6) implies that

and the ordinate gives the number of solved problem in- ) S .
9 P there is not much deviation in the data. Here, the running

stances. This means that for each running time in the data,. ) :
9 atlmes of most instances are close to the median. Moreover,

we depict how many instances were solved with running . .
compared to the other systems, there are no instances with

time less or equal to that time. The different curves corre- hort running times. more precisely shorter than 11 nd
spond to the different combinations of the chosen encodingS ortru g times, more precisely shorter tha seconas
For space reasons, we omit a deeper analysis of the

and context parameterisation. For better legibility, efif oo .
b 9oy unning times separated by true and false instances. The

ent symbols are attached to the curves. Figure 3 is a gooc{endance is that false instances are solved faster on aver-
illustration of howqgpr o benefits from the alternative en-

coding: the respective curves f6f-] and T[] are running age. However, for empty and half-full contexibe- bj

in parallel. The similarity of the median running times for Is faster on the true instances.

senpr op in Figure 2 extends to quite similar curves in Fig- )

ure 4 for the whole distribution. Note that symmetric curves 5. Conclusion

(with respect to the median) on a logarithmically scaled axi

imply skewed distribution of the data, i.e., low deviatian f In this paper, we discussed an extension of the sys-
instances with running times below the median and high de-tem cc T for deciding refined versions of uniform equiv-
viation for instances with running times above the median. alence and inclusion for disjunctive logic programs under
Figure 3 provides some insight into the rather odd behaviourthe answer-set semantics. Such correspondence problems
of qube- bj on this set of problem instances. While the allow to restrict the alphabet of the context class andfacil
curves for full and half-full context are rather similareth itate the removal of auxiliary atoms in the comparison—
curves for the empty context are standing out and illustratetwo important concepts for program comparisons in prac-



tice.

The tool is based on an efficient reduction to QBFs,

which itself is motivated by the high complexity of the cor-
respondence problems. While the theoretical basis was es-
tablished in previous work [14], we introduced alternative
encodings for PQIPs and PQEPs, and discussed simplifica-
tions realised within the new extension@é T. We com-
plemented our discussion with an analysis of experiments (8]
with different QBF solvers which reveal interesting differ

ences of the solvers depending on the particular problem

(7]

parameterisation and the choice of the encoding. Moreover, [9]

our encodings also provide an interesting benchmark set for

QBF solvers, for which there are only a few structured prob-
lems with more than one quantifier alternation available.
As related work, we mention the system DLPEQ [15]

for deciding ordinary equivalence, which is based on a re-

duction to logic programs, and the system SELP [3] for

checking strong equivalence, which is based on a reduc—[ll

tion to classical logic quite in the spirit of our implemen-
tation approach. An open topic for future work is, on the
one hand, the extension of our work to more general classeg12]

of programs and, on the other hand, research concerning
the equivalence of nonground programs. Also, we plan to
conduct experiments with more real-world oriented bench-
marks, like ones stemming from planning, diagnosis, and

scheduling domains. In fact, we are currently running an
extensive suite of experiments using different programs re
resenting specific diagnosing problems. These programs are

obtained from student data of a laboratory course on logic

programming at our university.
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