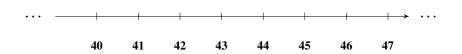
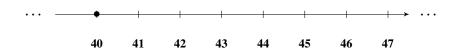
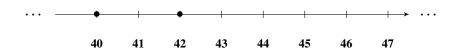
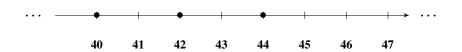
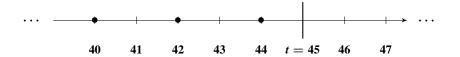
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

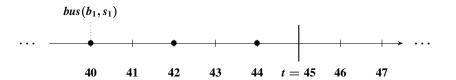

Harald Beck Minh Dao-Tran Thomas Eiter Michael Fink

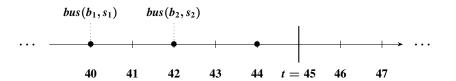

AAAI 2015

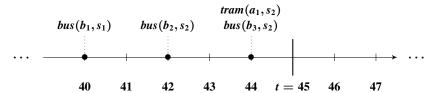

January 27, 2015

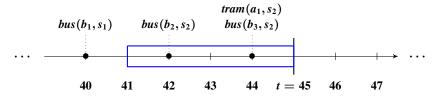


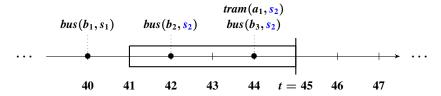


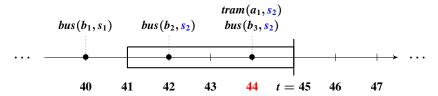


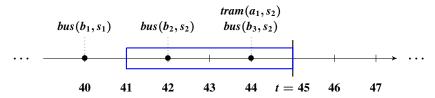




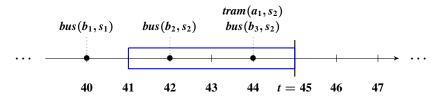






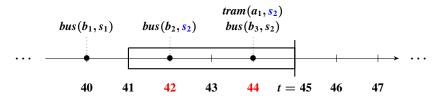

▶ Trams and buses appearing within the last 4 minutes,

- Trams and buses appearing within the last 4 minutes,
- ▶ at the same station


- Trams and buses appearing within the last 4 minutes,
- ▶ at the same station, at the same time?

- Trams and buses appearing within the last 4 minutes,
- at the same station, at the same time?
- CQL (continuous query language)

```
SELECT * FROM tram [RANGE 4], bus [RANGE 4]
WHERE tram.S = bus.S
```


H. Beck (TU Vienna) LARS AAAI'15 1/5

- Trams and buses appearing within the last 4 minutes,
- at the same station, at the same time?
- CQL (continuous query language)

```
SELECT * FROM tram [RANGE 4], bus [RANGE 4]
WHERE tram.S = bus.S
```

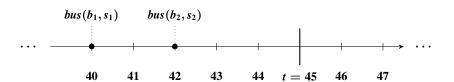
> :-(

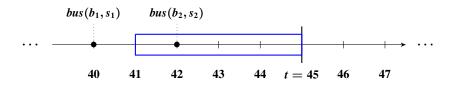
- Trams and buses appearing within the last 4 minutes,
- at the same station, at the same time?
- ► CQL (continuous query language)

 SELECT * FROM tram [RANGE 4], bus [RANGE 4]

 WHERE tram.S = bus.S
- :-(Query also reports bus at 42 with tram at 44

Diverse Approaches - Lack of Unifying Theory

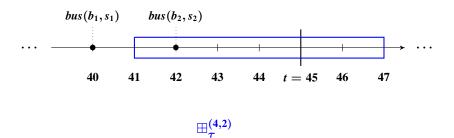

- Data Management: low-level, high frequency
- Semantic Web: SPARQL extensions
- KR & R: high-level, lower frequency

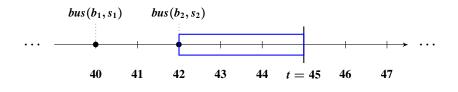

Diverse Approaches - Lack of Unifying Theory

- Data Management: low-level, high frequency
- Semantic Web: SPARQL extensions
- ► KR & R: high-level, lower frequency
- Hard to understand and compare semantics
- ▶ ⇒ Need language for formal analysis

Diverse Approaches - Lack of Unifying Theory

- Data Management: low-level, high frequency
- Semantic Web: SPARQL extensions
- ► KR & R: high-level, lower frequency
- Hard to understand and compare semantics
- ▶ ⇒ Need language for formal analysis
- Formal semantics for advanced reasoning over streams

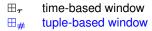


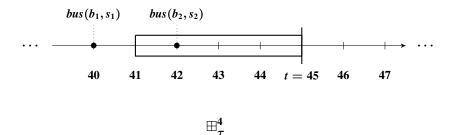

 $\boxplus_{m{ au}}^{m{4}}$

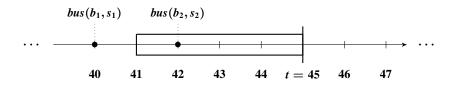
Window operators

 \boxplus_{τ} time-based window



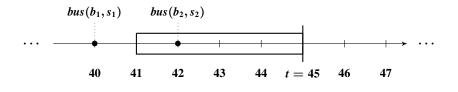

 \boxplus_{τ} time-based window





 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window ...

► Time reference

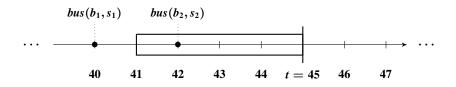


$$\boxplus_{\tau}^4 \lozenge bus(b_2, s_2)$$

 $egin{array}{ll} egin{array}{ll} egi$

► Time reference

♦ some time

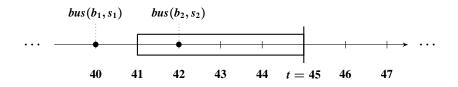


$$\boxplus_{\tau}^{4} \lozenge bus(b_2, s_2) \quad \rightsquigarrow \quad yes$$

 $egin{array}{ll} egin{array}{ll} egi$

▶ Time reference

♦ some time



$$\coprod_{\tau}^{4} \Box \neg jam$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

▶ Time reference

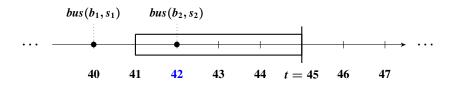
♦ some time□ all the time

$$\boxplus_{\tau}^4 \square \neg jam \quad \rightsquigarrow \quad yes$$

time-based window $\boxplus_{\boldsymbol{\tau}}$ ⊞# tuple-based window

Time reference

some time all the time

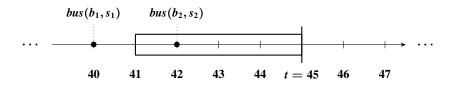


$$\coprod_{\tau}^4 @_{42} bus(b_2, s_2)$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

Time reference

♦ some time□ all the time@_{t'} exact time

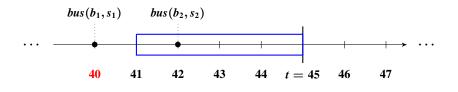


$$\coprod_{\tau}^{4} @_{42} bus(b_2, s_2) \quad \rightsquigarrow \quad yes$$

time-based window $\boxplus_{\boldsymbol{\tau}}$ ⊞# tuple-based window

Time reference

some time all the time exact time $\mathbf{Q}_{t'}$

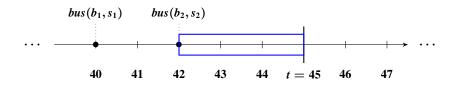


$$\boxplus_{\tau}^4 @_{40} bus(b_1,s_1)$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

▶ Time reference

♦ some time□ all the time@_{t'} exact time



$$\coprod_{\tau}^{4} @_{40} bus(b_1, s_1) \longrightarrow no$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

▶ Time reference

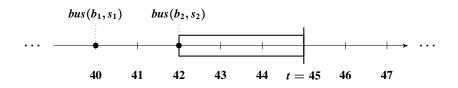
♦ some time□ all the time@_{t'} exact time

$$\boxplus^1_\#$$

 $egin{array}{ll} egin{array}{ll} egi$

Time reference

 \Diamond some time \Box all the time $\textcircled{a}_{t'}$ exact time

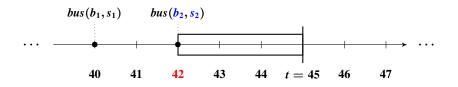


$$\boxplus^1_\#@_T$$

 $egin{array}{ll} egin{array}{ll} egi$

► Time reference

 \Diamond some time \Box all the time $\textcircled{a}_{t'}$ exact time

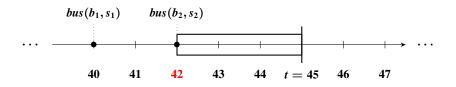


$$\boxplus^1_\#@_T bus(B,S)$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

► Time reference

♦ some time□ all the time@_{t'} exact time

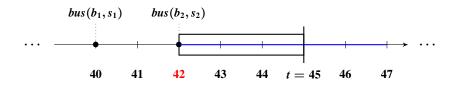

$$\coprod_{\#}^{1} @_{T} bus(B,S) \quad \rightsquigarrow \quad T = 42, B = b_2, S = s_2$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

► Time reference

♦ some time□ all the time@, exact time

H. Beck (TU Vienna)

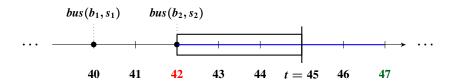


$$\boxplus^1_\#@_{\overline{I}}bus(B,S)$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

▶ Time reference

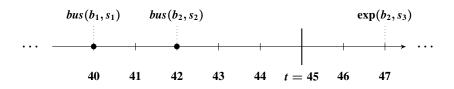
♦ some time□ all the time@_{t'} exact time



$$\coprod_{\#}^{1} @_{\underline{T}} bus(B,S), reach(S,S',\underline{D}),$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

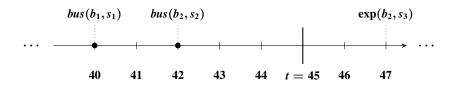
▶ Time reference


♦ some time□ all the time@,, exact time

 $\boxplus_{ au}$ time-based window $\boxplus_{\#}$ tuple-based window

▶ Time reference

♦ some time□ all the time@,, exact time

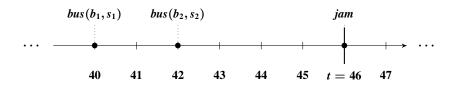

$$@_{T'}exp(B,S') \leftarrow \coprod_{\#}^{1} @_{T}bus(B,S), reach(S,S',D),$$

$$T' = T + D$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

Time reference

♦ some time□ all the time@, exact time


$$@_{T'}exp(B,S') \leftarrow \coprod_{\#}^{1} @_{T} bus(B,S), reach(S,S',D),$$

$$T' = T + D, not \coprod_{\pi}^{20} \lozenge jam.$$

 \boxplus_{τ} time-based window $\boxplus_{\#}$ tuple-based window

▶ Time reference

♦ some time□ all the time@,, exact time

$$@_{T'}exp(B,S') \leftarrow \coprod_{\#}^{1} @_{T} bus(B,S), reach(S,S',D),$$

$$T' = T + D, not \coprod_{\pi}^{20} \lozenge jam.$$

$$\boxplus_{\tau}$$
 time-based window $\boxplus_{\#}$ tuple-based window

▶ Time reference

♦ some time□ all the time@_{r'} exact time

In the paper ...

- Formal language
 - Streams, windows, formulas, rules
 - Stable model semantics
- Complexity
 - Model Checking: co-NP-c
 - ▶ SAT: Σ_2^P -c
 - If Nesting of ⊞ unbounded: both PSPACE-c

$$\boxplus_{\boldsymbol{\tau}}^{60} \square \boxplus_{\boldsymbol{\tau}}^{5} \lozenge bus$$

- Capturing CQL (continuous query language)
- Relation to ETALIS (complex event processing; intervals)

Summary

- Goal: Theoretical underpinning for stream reasoning
 - Analysis
 - Model-based, non-monotonic semantics
- ► LARS
 - ▶ Window operators ⊞
 - ▶ Time reference: \Diamond , \Box , $@_t$
 - Rule-based; ASP-like semantics
 - Not an end user language
- Future work
 - Compare existing semantics
 - Implementation of tractable fragments
 - Incremental evaluation
 - **.** . . .

AAAI'15

5/5